Retrieving H_2O/HDO columns over cloudy and clear-sky scenes from the Tropospheric Monitoring Instrument (TROPOMI)

Andreas Schneider^{1,2} Tobias Borsdorff¹ Joost aan de Brugh¹ Alba Lorente¹ Franziska Aemisegger³ David Noone⁴ Dean Henze⁵ Rigel Kivi² Jochen Landgraf¹

¹SRON Netherlands Institute for Space Research, Utrecht, the Netherlands

²Earth Observation Research Unit, Finnish Meteorological Institute, Sodankylä, Finland

³ Atmospheric Dynamics group, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland

⁴Department of Physics, University of Auckland, Auckland, New Zealand

⁵Department of Ocean, Earth and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, United States of America

ESA ATMOS Conference, Online, 24th November 2021

Introduction

Netherlands Institute for Space Research

Retrieval setup

Netherlands Institute for Space Research

- Profile-scaling approach with SICOR algorithm
- Fit of H₂O, HDO, CH₄, CO, and Lambertian surface albedo

- Forward model accounting for scattering, effective cloud parameters from pre-fit
- Surface albedo slightly regularized

Validation data sets: ground based FTIR measurements

- Fourier transform infrared (FTIR) observations of direct solar beam
- Two networks of stations: Total Carbon Column Observing Network (TCCON) and Network for the Detection of Atmospheric Composition Change (NDACC)
- Seven stations in both networks

Netherlands Institute for Space Research

Ground based FTIR measurement data sets

- TCCON data product
 - H₂O and HDO included
 - H₂O column validated with and adapted to in situ measurements
 - Data available 3 months to 1 year after measurement
- MUSICA-NDACC data product

- Multi-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water
- Dedicated water vapour isotopologue product from reprocessed NDACC observations
- Includes H₂O. HDO and H₂¹⁸O
- \bullet δD validated with aircraft measurements
- Data after 2014 available for only three stations

Differences between TCCON and MUSICA-NDACC

Spatial collocation

Usual spherical collocation area with radius r around FTIR

Spatial collocation

• Usual spherical collocation area with radius *r* around FTIR (light grey)

- Only take into account ground pixels inside cone in FTIR viewing direction ϑ with field of view α (dark grey)
- Value for α compromise between same air mass and amount of data

Spatial collocation

• Usual spherical collocation area with radius *r* around FTIR (light grey)

- Only take into account ground pixels inside cone in FTIR viewing direction ϑ with field of view α (dark grey)
- Value for α compromise between same air mass and amount of data
- Adapt field of view to solar zenith angle
- Condition of equal area with non-directional view at radius r_0 $\Rightarrow r_{\alpha} = \sqrt{\frac{360^{\circ}}{\alpha}} r_0$
- Linear variation of field of view α with SZA φ : $\alpha = \alpha_0 + \frac{90^\circ - \varphi}{90^\circ} (360^\circ - \alpha_0)$

Further collocation criteria

- Maximal time difference 2 h
- Maximal altitude difference 500 m
- Applying averaging kernels

Validation: Correlation H_2O/HDO at Edwards

Validation: Correlation a posteriori δ D at Edwards

Validation at low-altitude stations: H₂O/HDO

Validation at low-altitude stations: a posteriori $\delta \mathsf{D}$

Validation over the ocean with aircraft profiles P5 aircraft

Non-scattering product September 2018

Scattering product September 2018

Large enhancement in data coverage!

Case study: cold air outbreak: 17 Jan 2020

Case study: cold air outbreak: 18 Jan 2020

Case study: cold air outbreak: 19 Jan 2020

Case study: cold air outbreak: 20 Jan 2020

Case study: cold air outbreak: 21 Jan 2020

Summary

- First TROPOMI H_2O/HDO data set including scenes with low clouds
- Huge enhancement in data coverage
- Good data quality
- Single overpass results allow new interesting case studies
- Bias in reference data TCCON HDO corrected

Publication: https://doi.org/10.5194/amt-2021-141

Dataset: https://tropomi.grid.surfsara.nl/hdo/

Outlook: tackling the bias in TCCON HDO

- \blacksquare To date: ad hoc correction to match MUSICA $\delta {\sf D}$
- TCCON HDO data product should be improved and calibrated
- Profile measurements at TCCON station necessary to this end
- ⇒ project Water vapour Isotopologue Flask sampling for the Validation Of Satellite data (WIFVOS)
 - Flask sampling system on a small (< 20 kg payload) balloon</p>
 - Transfer existing drone sampler to balloon platform
 - Field campaign at TCCON station Sodankylä in March 2022

