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Introduction
Top of the atmosphere synthetic spectral radiances are computed for widespread atmospheric conditions by alternatively using the discrete ordinate algorithm solution or approximate methodologies where the scattering effects are simulated by appropriate
scaling of the absorption properties of the diffusive layers [1]. The residuals between the full scattering solution and the scaling methods are evaluated at far- and mid- infrared wavelengths and compared with the goal noise of the FORUM (Far-infrared Outgoing
Radiation Understanding and Monitoring) satellite sensor, that will be the next European Space Agency (ESA) 9 th Earth Explorer, capable of spectrally resolved measurements in the 100-1600 cm -1 band.
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Figure 6. Radiance (AL, contour) and brightness temperature (ABT, color) differences

Chou LI(Z]UId water and ice clouds 0.3738 0.0076 0.1186 Figure 5. Radiance (AL, con.tour) and brightness temi)lerature (AET' color) differences between CA and full scattering approaches at 410 cm™! (FIR), for ice clouds. The white
between CA and full scattering approaches at 1203 cm™~(MIR), for ice clouds. _ o _ ,
_ . . regions indicates differences below the FORUM noise level.
UniboWAT Liquid water clouds 0.5 0.2884 0.5545 -0.3429 .
Conclusions
UnibolCE Ice aggregates clouds 0.5 0.4452 -0.31383 0.3737 * In case of both water and ice cloud scenarios, the approximate solutions perform well in the mid infrared for most of the cases studied.
Table 1. Coefficients for the polynomial fitting of b versus g. * Inthe farinfrared region, not negligible inaccuracies are observed when approximate solutions are adopted for computations of TOA radiances
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[2]: U. Amato et al, “The o-iasi code for the calculation of infrared atmospheric radiance and its derivatives”, (2002), DOI: 10.1016/51364-8152(02)00027-0 * The accurate computation of the b parameter from the updated databases is implemented in c-FORUM [2] fast radiative transfer code.
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