

Harmonised satellite glyoxal data records from TROPOMI, OMI and GOME-2

<u>Christophe Lerot</u>¹, F. Hendrick¹, M. Van Roozendael¹, I. De Smedt¹, N. Theys¹, J. Vlietinck¹, H. Yu¹, J. van Gent¹, L. M.A. Alvarado^{2,3}, A. Richter³, T. Stavrakou¹, J.-F. Müller¹, P. Valks⁴, D. Loyola⁴, H. Irie⁵, V. Kumar⁶, T. Wagner⁶, S. F. Schreier⁷, V. Sinha⁸, T. Wang⁹, P. Wang⁹, C. Retscher¹⁰

¹ BIRA-IASB, ² AWI, ³ IUP-UB, ⁴ DLR-IMF, ⁵ Chiba-U, ⁶ MPIC, ⁷ BOKU-Met, ⁸ IIESR; ⁹ IAP-CAS, ¹⁰ ESA/ESRIN

ATMOS-2021 – 26th November 2021

Why studying glyoxal (CHOCHO)?

Outline

- **GLYRETRO:** One of the ESA innovation projects aiming at applying and further developing the BIRA-IASB glyoxal algorithm to TROPOMI.
- Two main project components:
 - Algorithm and product development.

BIRA-IASB OMI product

Inter-satellite comparison

AC-SAF GOME2A/B products (based on the BIRA-IASB algorithm)

 Product characterization
 Inter-algorithm comparison: IUP-UB TROPOMI product (Alvarado et al., 2020)

Validation: MAX-DOAS data at 9 stations

TROPOMI DOAS glyoxal tropospheric column retrievals

1. DOAS spectral fit

CHOCHO optical depth are generally very low (<5e-4)

- \rightarrow Significant noise in the retrievals.
- → Very sensitive to interferences with other spectral signatures (from other absorbers or calibration).

Fitting interval: 435-460 nm
Absorption cross-sections:
Glyoxal, O_3 , NO_2 (2 T°), O_4 , H_2O (vapour), H_2O (liquid),
Scene Helerogeneity (2 XS), Ring effect
Other parameters:

Polynomial (3rd order), Intensity offset correction, wavelength shift

aeronomie•be

TROPOMI DOAS glyoxal tropospheric column retrievals

1. DOAS spectral fit

Scene Heterogeneity

- Scene brightness heterogeneity perturbs the instrumental slit function response.
- \rightarrow Biases on glyoxal SCDs.
- Adding pseudo cross-sections can mitigate this effect (A. Richter et al., 2018).

Correction for strong NO₂ absorption

- The wavelength dependence of the effective light path for strong NO₂ absorption leads to misfits.
- \rightarrow Biases on glyoxal SCDs.
- An empirical correction of the CHOCHO SCDs as a function of the NO₂ SCD is applied.

Simulated CHOCHO SCD errors asaf of NO₂ SCDs

TROPOMI DOAS glyoxal tropospheric column retrievals

2. AMF computation

Land: BIRA CTM MAGRITTE (run at 1°x1°) using

Oceans: Fixed airborne MAX-DOAS profile measured in

- Box-AMFs *W_i* pre-computed with VLIDORT at 448nm asaf of geometry, scene altitude and reflectivity.
- No cloud/aerosol correction; Cloud fractions > 20 % rejected.

inventories from 2018.

the Pacific (Volkamer et al., 2015).

A priori profile shapes:

Albedo dependency of weighting functions

3. Background correction

- Row-dependent (destriping) correction using Pacific measurements.
- Reference value: 1x10¹⁴ molec/cm².

Row dependence of the uncorrected VCDs

Intersatellite comparison

- Application of the algorithm to TROPOMI, OMI, GOME-2A and GOME-2B (AC-SAF data sets).
- GOME-2: SNR= 1000; footprint= 80x40 km².
 OMI: SNR= 500; footprint= 13x24 km².
 TROPOMI: SNR= 1500; footprint= 3.5x5 km².
- Much more details in the retrieved glyoxal fields at a reasonable time resolution.

TROPOMI (Jan 2019 @ 0.05°) OMI (Jan 2006 @ 0.05°)

GOME2A (Jan 2008 @ 0.25°) OMI (Jan 2006 @ 0.25°)

Intersatellite comparison

Interalgorithm comparison (BIRA/IUP)

- Main algorithmic differences:
 - Reference values in background correction.
 - Different a priori profiles.
 - Small differences in DOAS settings (e.g. fit window, polynomial)

Interalgorithm comparison (BIRA/IUP)

- Main algorithmic differences:
 - Reference values in background correction.
 - Different a priori profiles.
 - Small differences in DOAS settings (e.g. fit window, polynomial)
- Using similar reference Pacific columns, both product agree reasonably well and present similar spatio-temporal CHOCHO variability.

Interalgorithm comparison (BIRA/IUP)

180

- Main algorithmic differences:
 - Reference values in background correction.
 - Different a priori profiles.
 - Small differences in DOAS settings (e.g. fit window, polynomial)
- Using similar reference Pacific columns, both product agree reasonably well and present similar spatio-temporal CHOCHO variability.
- Remaining differences originate from the DOAS fits and from the AMFs.

Validation

- MAX-DOAS validation based on 9 stations in Asia and Europe.
- Overpass radius: 20 km for TROPOMI, 100 km for others.
- MAX-DOAS data within 1.5h of the satellite overpass selected.
- The exercise would benefit from a further homogenization of MAX-DOAS retrievals.

Station (coordinates) Time range	Institution PI	Retrieval Approach and fit interval	Reference
Xianghe/China (39.75°, 116.96°E) 2010-2020 Uccle/Belgium (50.78°N, 4.35°E) 2017-2020	BIRA-IASB	Profile retrieved using Optimal Estimation 436-468 nm	(Clémer et al., 2010; Hendrick et al., 2014)
Chiba/Japan (35.63°N, 140.10°E) 2012-2020 Phimai/Thailand (15.18°N, 140.10°E) 2014-2020 Pantnagar/India (29.03°N, 79.47°E) 2017-2020	CERES	Profile retrieved using a parametrization approach 436–457 nm	(Hoque et al., 2018; Irie et al., 2011)
Mohali/India (30.67°N, 76.73°E) May 2019 - 2020	MPIC/IISERM	Profile retrieved using a parametrization approach 400-460 nm	(Beirle et al., 2019; Kumar et al., 2020)
Athens/Greece (38.05°N, 23.80°E) 2018-2020 Vienna/Austria (48.18°N, 16.39°E) 2018-2020 Bremen/Germany (53.11°N, 8.86°E) 2018-2020	IUP-UB	Columns retrieved using the Geometrical Approximation 436-468 nm	(Gratsea et al., 2016; Schreier et al., 2020)

Validation

- Long Xianghe time series allows validating all sensors.
- Satellite and MAX-DOAS seasonal cycles agree well. Degradation appears for OMI/GOME-2 data after a few years.
- Reduced scatter for TROPOMI clearly visible.
- Reduction of small negative biases when applying the sat. averaging kernels to MAX-DOAS data.

Validation

- Overall, consistent TROPOMI and MAX-DOAS seasonal cycles.
- Large biases in Phimai and Pantnagar not fully understood, especially as not identified in Mohali.
- Indication for a negative bias during wintertime at mid/high latitude (e.g. Bremen).

	Xianghe	Chiba	Phimai
TROPOMI	0.87	0.80	0.85
ΟΜΙ	0.70	0.32	N/A
GOME-2B	0.37	0.66	0.88
GOME-2A	0.92	0.58	0.86

Sat./MAX-DOAS correlation coefficients

- Consistent glyoxal fields are obtained from TROPOMI, OMI, GOME2A/B with the BIRA-IASB algorithm. TROPOMI provides much more details. The OMI and GOME-2A/B data sets become less stable after a few years of operation.
- Validation of the satellite glyoxal retrievals based on 9 MAX-DOAS sites showed:
 - Seasonal cycles observed from space and ground in good agreement.
 - A low bias in satellite data during winter for mid/high latitude stations.
 - Significant unexplained biases at 2 sites. They may originate from the satellite a priori profiles, neglect of aerosols, but also from MAX-DOAS data themselves. It would be beneficial to homogenize the MAX-DOAS glyoxal retrievals.
- Comparisons with the IUP-UB product allowed to quantify the impact of choices made at every step of the algorithm.
- The glyoxal signal over oceans remains largely unexplained and should be cautiously interpreted because of the high sensitivity to the DOAS settings.
- TROPOMI glyoxal data are accessible via the glyretro website (<u>https://glyretro.aeronomie.be</u>).
- More details in Lerot et al., accepted for AMT.

