SNOW AND ICE FAR-INFRARED SPECTRAL EMISSIVITY RETRIEVALS FROM FORUM-LIKE MEASUREMENTS

<u>C. Belotti</u>, M. Barucci G. Bianchini B. Cluzet^{1,2}, F. D'Amato, G. Di Natale F. Pratesi, M. Ridolfi, S. Viciani L. Palchetti

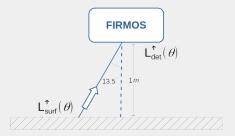
CNR – INO, ITALY ¹ UGA, UT, MÉTÉO-FRANCE, CNRS, CEN, FRANCE ² NOW AT: WSL, SLF, SWITZERLAND

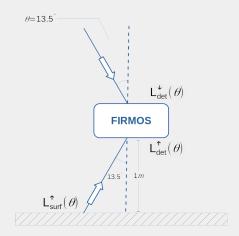
24 NOVEMBER 2021

ISTITUTO NAZIONALE DI OTTICA CONSIGLIO NAZIONALE DELLE RICERCHE

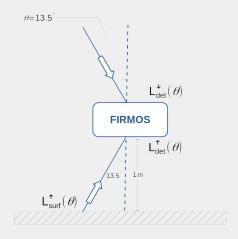
MOTIVATION

- In high-elevation locations and polar regions where the dry and cold atmosphere is not opaque in the far-infrared (FIR), part of the surface emission can escape to space
- In the FIR, snow surface emissivity shows considerable spectral variation
- The impact of modelled FIR surface emissivity was studied by Chen et al. 2014 and Feldman et al. 2014; Huang et al. 2016 compiled a database of surface spectral emissivity
- There is only a handful of retrievals of infrared spectral surface emissivity reaching the far-infrared
- Bellisario et al. 2016 and Murray et al. 2020 exploited observations taken by TAFTS during an airborne campaign over Greenland



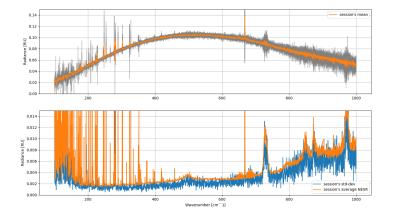

- FTS, 100—1600 cm⁻¹ (6.25—100 μm), spectral resolution is 0.5 cm⁻¹
- One of FORUM objectives is the retrieval of FIR surface emissivity
- Excellent sampling at high latitudes (sun-synch 98.7° orbit)
- Uncertainty of 0.01 in 300—600 cm⁻¹, 50 cm⁻¹

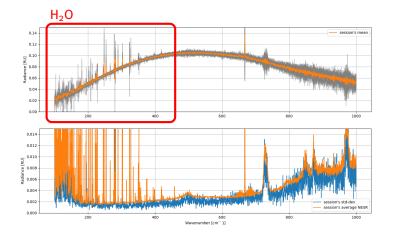
- FORUM demonstrator
- FTS, 100—1000 cm⁻¹, $\Delta \nu = 0.3$ cm⁻¹ ground-based, balloon
- Zugspitze campaign (German Alps, 3000 a.m.s.l)

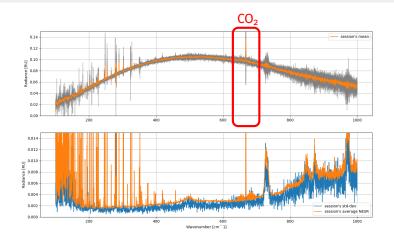

- FORUM demonstrator
- FTS, 100–1000 cm⁻¹, $\Delta \nu = 0.3$ cm⁻¹ ground-based, balloon
- Zugspitze campaign (German Alps, 3000 a.m.s.l)
- Upwelling radiance @13.5 degree off-nadir

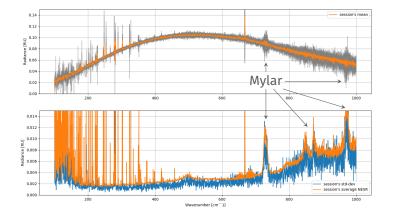
- FORUM demonstrator
- FTS, 100–1000 cm⁻¹, $\Delta \nu = 0.3$ cm⁻¹ ground-based, balloon
- Zugspitze campaign (German Alps, 3000 a.m.s.l)
- Upwelling radiance @13.5 degree off-nadir
- Downwelling radiance @13.5 degree viewing zenith angle

- FORUM demonstrator
- FTS, 100–1000 cm⁻¹, $\Delta \nu = 0.3$ cm⁻¹ ground-based, balloon
- Zugspitze campaign (German Alps, 3000 a.m.s.l)
- Upwelling radiance @13.5 degree off-nadir
- Downwelling radiance @13.5 degree viewing zenith angle
- 9 samples characterised by snow grain type, density (kgm⁻³), and specific surface area (SSA, m²kg⁻¹)

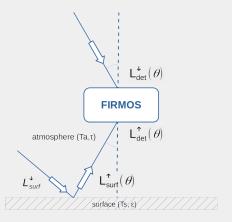






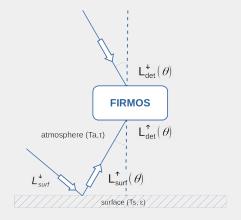

SNOW CHARACTERISATION

id	name	description	spectra	mins
17:30 - d1	SKY		1*	8
17:51	ICE	Ice	10	79
19:38	FS	Fresh snow	12	95
21:36	ACC30	Accumulated 30cm snow	11	87
23:42	SKY		1*	8
06:19 - d2	SKY		1*	8
06:44	DH	Depth hoar snow	13	103
09:01	DHRUG	Depth hoar snow with grooves	12	95
10:52	RGREF	Melted forms snow	7	56
12:13	SKY		1*	8
13:00	MFREF	Refrozen snow - natural case	14	111
15:00	SKY		1*	8
16:20	SKY		1*	8
16:31	DS	Dense slab snow	14	111
18:48	ACC100	Accumulated (100 cm) snow	13	103
21:00	ACC70	Accumulated (70 cm) snow	12	95



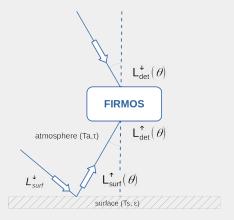
MODELLING OF THE PROBLEM

$$L_{det}^{\uparrow} = \left[\epsilon B(T_{s}) + (1 - \epsilon)L_{surf}^{\downarrow}\right]$$


- $\blacksquare \ \epsilon_{\nu}$ surface spectral emissivity
- *B_ν*(*T*_s) Planck emission at surface temperature (*T*_s)
- $L^{\downarrow}_{\nu,surf}$ atmospheric downwelling radiance at the surface

MODELLING OF THE PROBLEM

$$L_{det}^{\uparrow} = \left[\epsilon B(T_{s}) + (1 - \epsilon) L_{surf}^{\downarrow} \right] \tau$$


- $\blacksquare \epsilon_{\nu}$ surface spectral emissivity
- *B_ν*(*T*_s) Planck emission at surface temperature (*T*_s)
- $L^{\downarrow}_{\nu,surf}$ atmospheric downwelling radiance at the surface
- τ_{ν} atmospheric spectral transmission

MODELLING OF THE PROBLEM

$$L_{det}^{\uparrow} = \left[\epsilon B(T_{s}) + (1-\epsilon)L_{surf}^{\downarrow}\right]\tau + E^{\uparrow}$$

- $\blacksquare \epsilon_{\nu}$ surface spectral emissivity
- *B_ν*(*T*_s) Planck emission at surface temperature (*T*_s)
- $L^{\downarrow}_{\nu,surf}$ atmospheric downwelling radiance at the surface
- τ_{ν} atmospheric spectral transmission
- E_{ν} atmospheric path upwelling radiance

$$L_{det}^{\uparrow} = \left[\epsilon B(T_s) + (1 - \epsilon) L_{surf}^{\downarrow}\right] \tau + E^{\uparrow}$$

- Together with the upwelling radiance measured by the detector we need knowledge of the atmospheric downwelling radiance L[↓]_{surf}
- If the surface is specular reflector we can use the measurement made by the instrument $L_{surf}^{\downarrow} \simeq L_{det}^{\downarrow}$

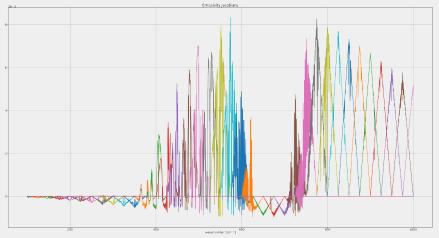
$$L_{det}^{\uparrow} = \left[\epsilon B(T_{s}) + (1 - \epsilon) L_{surf,eff}^{\downarrow}\right] \tau + E^{\uparrow}$$

- Together with the upwelling radiance measured by the detector we need knowledge of the atmospheric downwelling radiance L[↓]_{surf}
- If the surface is specular reflector we can use the measurement made by the instrument $L_{surf}^{\downarrow} \simeq L_{det}^{\downarrow}$
- But snow reflection is Lambertian, we model the downwelling radiance at a single effective angle (55°, Bellisario et al. 2017) using the state of the atmosphere retrieved from the sky observations

$$\blacksquare L^{\downarrow}_{surf,eff} = RT(T, WV, \dots, \theta = 55^{\circ})$$

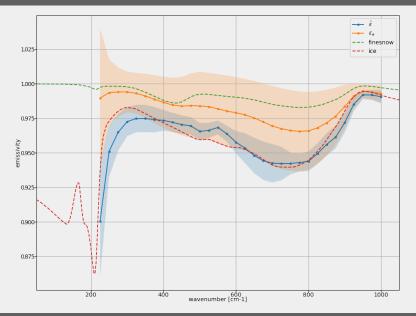
INVERSION

$$L_{det}^{\uparrow} = F\left(\epsilon, T_{s}, T_{a}, wv_{a}, L_{surf, eff}^{\downarrow}\right)$$

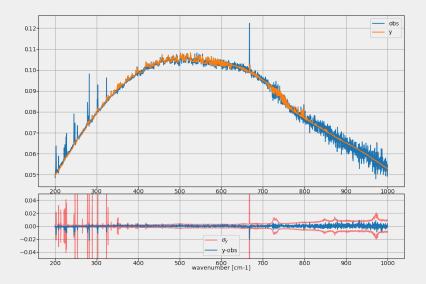

We use OE to find an optimal solution \hat{x} given the observation and prior information using an iterative process

$$\begin{aligned} x_{i+1} &= x_a + (S_a^{-1} + K_i^T S_y^{-1} K_i)^{-1} K_i^T S_y^{-1} [y - F(x_i) + K_i (x_i - x_a)] \\ S_i &= (S_a^{-1} + K_i^T S_y^{-1} K_i)^{-1} \end{aligned}$$

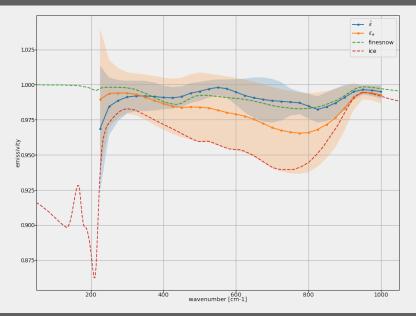
- x state (emissivity, surface T, air humidity and T)
- x_a , S_a prior information
- $K = \frac{\delta y}{\delta x}$ Jacobian matrix to linearise F
- *y*, *S_y* observations


RETRIEVAL

- a-priori courtesy of X. Huang, same as Huang et al. (2016) but at FIRMOS' viewing angle
- Jacobians

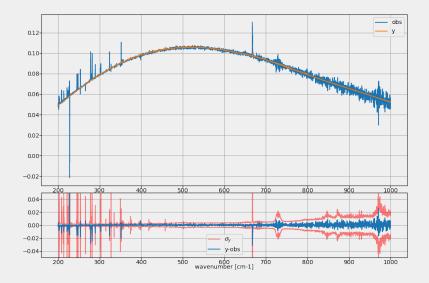

ATMOS 2021 - ESA Atmospheric Science Conference

RESULTS, ICE



ATMOS 2021 - ESA Atmospheric Science Conference

RESULTS, ICE



RESULTS, SNOW ACC100

ATMOS 2021 - ESA Atmospheric Science Conference

RESULTS, SNOW ACC100

- The retrieval of snow surface emissivity from FIRMOS shows promising results
- There is good sensitivity in the 400-600 cm⁻¹ range
- The origin of the dip in the 200-400 cm⁻¹ range is unclear
- Work is in progress to exploit the snow samples characterisation
- in future campaigns the measurements should alternate between surface and atmosphere

THANK YOU