

Bromine Nitrate (BrONO₂) derived from MIPAS to test our understanding of Stratospheric Bromine Chemistry

Michael Höpfner, Gerald Wetzel, Björn-Martin Sinnhuber, Florian Haenel, Johannes Orphal, Roland Ruhnke, Gabriele Stiller, Thomas von Clarmann: *Institute of Meteorology and Climate Research;* Oliver Kirner: *Steinbuch Centre for Computing*

www.kit.edu

Why bromine? Why BrONO₂?

- Ozone depleting potential of bromine ~60 times greater than of chlorine due to faster photolysis of the reservoir species BrONO₂ compared to CIONO₂
- Bromine couples with chlorine cycles (ozone hole chemistry)
- Anthropogenic bromine content decreases but large natural sources which may be influenced by climate change
- BrONO₂ is the most abundant stratospheric bromine species during night (up to > 95% of total Br_y) and, therefore, well suited to derive Br_y

M. Höpfner et al., Institute of Meteorology and Climate Research

Reactions and their uncertainties determining BrONO₂

Reaction	BrONO ₂ BrO+NO ₂	1σ uncertainty factor (JPL2019)	
Gain:	photolysis O(³ P) (?) aerosol BrO+HO ₂	HBr+O Br+HO ₂ Br+CH ₂ O Photolysis,	
$BrO + NO_2 \xrightarrow{M} BrONO_2$	HOBr	поы+о	1.9
Loss:			
$BrONO_2 + h\nu \rightarrow Prode$	ucts	1.1 (l	JV x-sections)
$BrONO_2 + O(^3P) \rightarrow BrO + NO_3$		1.3 (but only one publication on this reaction)	
$BrONO_2 + H_2O(s, l, H_2SO_4 \cdot nH_2O) \\ \rightarrow HOBr + HNO_3$		2-4 (reaction probability)	

First BrONO₂ observations

MIPAS/Envisat

M. Höpfner et al., Institute of Meteorology and Climate Research

MIPAS-Balloon

Local solar time (h)

MIPAS BrONO₂ retrieval updates

	'Old'	'New'
MIPAS L1b spectra	4.61/62	8.03 (doi:10.5270/EN1-77pi5sd)
Data coverage/averaging	Sep. 2002 and 2003; monthly; 6 latitude bands; dark/sunlit	2002-2012; 3 day; 18 latitude bands; dark/sunlit
BrONO ₂ x-sections	Orphal et al., 2008 (doi:10.1016/j.cplett.2008.04.089) adapted to strat. temperatures	p/T dependent by Birk et al., 2016 (doi: 10.1016/j.jms.2016.03.007)
HO ₂ NO ₂ x-sections	220 K (May and Friedl, 1993, doi: 10.1016/0022-4073(93)90076-T)	2-point interpolation with: 298 K (Friedl et al., 1994, doi: 10.1006/jmsp.1994.1151)

Characteristics of BrONO₂ retrievals: error estimates and vertical resolution

Vertical resolution

Overview of the observations

Major features of variability:

- Diurnal variability due to fast photolysis of BrONO₂ during day versus the production via BrO+NO₂.
- Annual recurrence of low values during night at high latitudes due to the lack of NO_x as supply for the production of BrONO₂ in combination with heterogeneous loss at PSC particles.
- Annual maxima of BrONO₂ volume mixing ratios at high- and midlatitudes during day- and nighttime observations in summer caused by the annual variability of NO₂.

Comparison to model data: underestimation at high latitudes during polar night

Model: EMAC (ECHAM5 version 5.3.02, MESSy version 2.52), T42L90MA-resolution with 90 vertical hybrid pressure levels up to 0.01 hPa (~80 km), horizontal resolution 2.8° x 2.8° latitude x longitude, nudged to ERA-Interim. Model results have been convolved with the vertical averaging kernel of the retrieval.

Simulations reproduce the major variabilities of the observations.

Model underestimation at higher altitudes during polar night

Comparison to model data: model underestimation at high latitudes during polar night

Comparison with NO₂ between model and observed by MIPAS:

 Model underestimation at higher altitudes during polar winter
→ downwelling of NO_x-rich air from production by energetic particle precipitation not considered in the model.

E.g.: Funke, B., et al.: Mesospheric and stratospheric NO_y produced by energetic particle precipitation during 2002-2012, <u>https://doi.org/10.1002/2013JD021404</u>, 2014.

Comparison to model data: overestimation at low and mid-latitudes below ~25 km

Comparison to model data: model underestimation at low latitudes around 30 km during day

Total stratospheric bromine derived from observed BrONO₂

All Br_y data based on BrO measurements **but** model needed to correct for up to 40% of Br_y being not in the form of BrO.

M. Höpfner et al., Institute of Meteorology and Climate Research

Total stratospheric bromine derived from observed **BrONO**₂

1.000

- 0.975

- 0.950

- 0.925

- 0.900

- 0.875

0.850

- 0.825

0.800

Ó 20 40 60 80

Latitude

Karlsruhe Institute of Technology

- At certain regions >95% of Br_v is in the form of BrONO₂
- during night \rightarrow more
- independent from model corrections when calculating
- Br_v from BrONO₂ compared to
- determination from **BrO observations**

13 ESA ATMOS21 26-Nov-2021

M. Höpfner et al., Institute of Meteorology and Climate Research

Total stratospheric bromine derived from observed BrONO₂

Karlsruhe Institute of Technology

Summary

- First multi-annual observations of BrONO₂ profiles in the stratosphere during day and night
- Confirmation of general features as simulated by models
- First report of polar wintertime BrONO₂ enhancement at 30 km and above due to downwelling of NO_x rich air from the mesosphere
- Too high modeled nighttime BrONO₂ at lower altitudes
- Too low modeled daytime BrONO₂ at 30 km over the equator
- Independent (of BrO) determination of total stratospheric Br_y confirms 21-22 pptv for years of stratospheric entry between 1997 and 2006
- Paper accepted for publication in ACP:

https://acp.copernicus.org/preprints/acp-2021-535/#discussion

Supplementary material

Why bromine? Why BrONO₂?

Concentrations: chlorine ≈ 150 × bromine

But: ozone depleting potential per atom: bromine ≈ 60 × chlorine

Spectral signal of BrONO₂

Wetzel et al., 2017, doi.org/10.5194/acp-17-14631-2017

Model overestimation at low and mid-latitudes below ~25 km: (1) wrong measurements?

- Up to 8 pptv difference cannot be explained by the MIPAS error estimation.
- Any unidentified additional systematic error source cannot be ruled out.

Model overestimation at low and mid-latitudes below ~25 km: (2) wrong model: NO₂?

M. Höpfner et al., Institute of Meteorology and Climate Research

Model overestimation at low and mid-latitudes below ~25 km: (3) wrong model: release of Br_y from source gases?

Modelled BrO fits well to observations → unlikely that the inorganic bromine content at 20–25km is strongly overestimated in the EMAC model calculations

Model overestimation at low and mid-latitudes below ~25 km: (4) wrong model: partitioning of Br_y between main constituents?

Partitioning of Br_y at around 20-25 km during night is essentially determined by the heterogeneous conversion of $BrONO_2$ into HOBr through sulfate aerosols:

 $BrONO_2 + H_2O(s, l, H_2SO_4 \cdot nH_2O) \rightarrow HOBr + HNO_3$

M. Höpfner et al., Institute of Meteorology and Climate Research

Model underestimation at low latitudes around 30 km during day: (1) wrong measurements?

- Up to 5 pptv difference difficult to explain by MIPAS error estimation.
- Any unidentified additional systematic error source cannot be ruled out.

Model underestimation at low latitudes around 30 km during day: (2) wrong model: NO₂?

Model overestimates NO_2 vmrs by 10-20% \rightarrow cannot account for the model underestimation of $BrONO_2$ but would even imply stronger modelled production of $BrONO_2$ Model underestimation at low latitudes around 30 km during day: (3) wrong model: reaction parameters?

Reaction	1σ uncertainty factor (JPL2019) @220 K	
Gain:		
$BrO + NO_2 \xrightarrow{M} BrONO_2$	1.9	
Loss:		
$BrONO_2 + h\nu \rightarrow Products$	1.1 (UV x-sections)	
$BrONO_2 + O(^3P) \rightarrow BrO + NO_3$	1.3 (but only one publication on this reaction)	
$\begin{array}{c} BrONO_2 + H_2O(s, l, H_2SO_4 \cdot nH_2O) \\ \rightarrow HOBr + HNO_3 \end{array}$	2-4 (reaction probability)	

Model underestimation at low latitudes around 30 km during day: (3) wrong model: reaction parameters?

- Addition of BrONO₂+O(³P) leads to even larger underestimation
 - Increase of BrO+NO₂+M by factor 2 leads to compliance at 30 km but to overestimation below 28 km