

Retrieval of SO₂ height from TROPOMI using a look-up-table Covariance-Based Retrieval Algorithm (COBRA)

<u>Nicolas Theys</u>^{1,*}, Hugues Brenot ¹, Christophe Lerot¹, Jeroen van Gent¹, Lieven Clarisse², Mike Burton³, Matthew Varnam³, Michel Van Roozendael¹

(1) BIRA-IASB, (2) ULB SQUARES, (3) University of Manchester

*contact: theys@aeronomie.be

Volcanic plume after the eruption of Raikoke (June 2019) observed from the ISS

SO₂ layer height information important for:

- Aviation safety.
- Constraining SO₂ vertical columns/mass/fluxes.
- Monitoring volcanic eruptions and understand underlying processes.
- Assessing the impact of volcanic eruptions on the atmosphere (e.g. climate)

 \Rightarrow TROPOMI's high-spatial resolution is particulary well suited and complements existing SO₂ plume height retrievals from IASI

SO₂ Layer Height and VC retrieval

Optical depth closure equation:

 $y_{meas} = y_{bckg} + y_{SO2}$

$$y_{meas} = -log\left(\frac{I}{I_0}\right)$$

aeronomie.be

Iterative retrieval (310.5-326 nm)

Initial approach: LUT-DOAS

 y_{bckg} modelled by DOAS : polynomial, cross-sections (or pseudo) of O₃, Ring + closure terms

> **disadvantage:** many fitting parameters. For low SO_2 loadings => bias and noise on SO_2 LH and VC.

Improved approach: LUT-COBRA

 y_{bckg} statistical characterization from a set of SO₂-free spectra by \bar{y}, S (mean spectrum and covariance matrix) see Theys et al., ACP, 2021.

$$\hat{x}_{i+1} = \hat{x}_i + \left(k_i^T S^{-1} k_i\right)^{-1} k_i^T S^{-1} (y_{meas} - y_{SO2,i} - \bar{y})$$

 $x = \begin{bmatrix} LH \\ VC \end{bmatrix}$ SO₂ layer height and SO₂ column

 $k_i = \begin{bmatrix} \frac{\partial y_{SO2,i}}{\partial LH} & \frac{\partial y_{SO2,i}}{\partial VC} \end{bmatrix}$ SO₂ Jacobeans

Gain in sensitivity

2018 Sierra Negra eruption

2018 Etna eruption

2019 Ulawun eruption

2020 Taal eruption

2021 Soufrière eruption

2021 Cumbre Viaje (Palma) eruption

Plume_traj tool: Take advantage of high resolution SO₂ measurements and back-trajectories to invert <u>height-time resolved SO₂ emissions</u>

Back trajectories:

- Computed using HYSPLIT
- Uses NOAA GDAS 0.25° 3D wind field

Pardini et al., JVGR, 2018 Queiβer et al., Sc. Rep., 2019 Burton et al., Sc. Adv., 2021

Summary

 A look-up-table Covariance-Based Retrieval Algorithm (LUT-COBRA) enables to retrieve SO₂ height with improved sensitivity (for SO₂ VCD>5DU).

=> clear added-value for dispersed plumes and the study of modest volcanic eruptions.

- Comparison to CALIOP, MLS, IASI, back trajectories: reasonable results on a number of volcanic events.
- SO₂ height accuracy: 1-2 km except for young ash laden plumes and at plume edges (effect of pixel underfilling).
- For tropical eruptions with SO₂ injection at tropopause level, retrieved SO₂ heights are generally too high (by several kms).
- For plumes in lower troposphere, TROPOMI is lower than IASI (by 1-2 km).

Thank you for your attention!

