

ATMOS 2021

EO Science for Society CitySatAir

Exploiting S5P NO₂ data for the urban scale

Bas Mijling (KNMI), Philipp Schneider (NILU) , Paul Hamer (NILU) ATMOS 2021 – Air Quality Session 23/11/2021

CitySatAir in a nutshell

- How can Sentinel-5P data (tropospheric NO₂ columns) be better exploited for monitoring and mapping urban air quality at scales relevant for human exposure.
- Goal: hourly air quality maps of NO₂ at 100 m resolution for the selected cities.
- Two test cities: Oslo and Madrid.
 Both have an extensive air quality reference network, and an additional low-cost sensor network.
- Testing the performance of assimilation of TROPOMI observations under different in-situ network configurations.
- What is the added value of satellite observations when these assimilation systems are applied to cities with poorer or non-existent monitoring networks?

CitySatAir Oslo Case Study

esa

- Oslo: a challenging case due to
 - Low overall pollution levels
 - Abundant cloud cover
 - Low light level in the winter months
- Goal: Exploit S5P/TROPOMI NO₂ TVCD for urban-scale applications in Norway.
- Two approaches:
 - Indirect approach: Spatiotemporal correction of bottom-up emissions
 - **Direct approach**: Geostatistical downscaling to higher spatial resolutions

S5P NO₂ data availability throughout the year over major cities in Norway

Schneider, P., Hamer, P. D., Kylling, A., Shetty, S., & Stebel, K. (2021). Spatiotemporal Patterns in Data Availability of the Sentinel-5P NO2 Product over Urban Areas in Norway. *Remote Sensing*, *13*(11), 2095.

Indirect exploitation: EPISODE processing

The urban dispersion model EPISODE (Hamer et al, 2020) was used. Processing steps included:

- **1. Temporal interpolation** of the hourly EPISODE data to the exact TROPOMI overpass time.
- 2. The temporally interpolated data is **projected to the CRS of the target geometry** and **spatially interpolated** to the irregular TROPOMI L2 pixel footprints using **areal-weighted** polygon-to-polygon interpolation
- **3. Vertically interpolate** the NO₂ concentration to the vertical layers of the TM5 model from the retrieval.
- 4. Application of the **TROPOMI L2 averaging kernel** to the output from Step 3 on a pixel-by-pixel and layer-by-layer basis.
- Calculation of partial NO₂ columns for each TM5 layer, and vertical integration and conversion to units of 10¹⁵ molec. cm⁻².

Hamer, P. D., Walker, S.-E., Sousa-Santos, G., Vogt, M., Vo-Thanh, D., Lopez-Aparicio, S., Schneider, P., Ramacher, M. O. P., & Karl, M. (2020). The urban dispersion model EPISODE v10.0 – Part 1: An Eulerian and subgrid-scale air quality model and its application in Nordic winter conditions. *Geoscientific Model Development*, *13*(9), 4323–4353.

→ ATMOS 2021 - ESA ATMOSPHERIC SCIENCE CONFERENCE

NO₂ plumes originating from Oslo seen as S5P TVCD (top) and EPISODE TVCD (bottom) for 11 March 2019 at 11:25 UTC.

EPISODE-derived NO₂ columns against S5P/TROPOMI NO2 columns for the overpass on 11 March 2019 at 11:25 UTC. Each marker represents one TROPOMI pixel geometry. Red line: linear regression fit to the data. Black dashed line: 1:1 reference line.

Indirect exploitation: Satellite-model biases

Loess fit weighted by N

The S5P-EPISODE difference shows biases in model output throughout the year.

75-Sentinel-5P [%] n Relative bias EPISODE vs 50 100150 Aug 200 25 - Apr Sep Mar 0 -20 60 40 80 Relative bias EPISODE vs stations [%]

S5P-derived model bias agrees well with model bias against stations throughout the year.

CitySatAir

Indirect exploitation: Satellite-based emission correction @esa

- 1. The S5P-derived monthly correction factors were applied to the bottom-up emissions.
- 2. EPISODE was re-run with the bias-corrected emissions for the entire year
- 3. New model output was compared against observations from reference stations

S5P-corrected emissions result in up to 20% higher accuracy of the model throughout the year.

Direct Exploitation: Geostatistical Downscaling

esa

- Geostatistical downscaling allows for increasing the spatial resolution of the S5P NO₂ data by exploiting the spatial patterns from a high-resolution proxy dataset
- We first derive surface NO₂ concentration using the EPISODE-based column-to-surface ratio
- Then the surface NO₂ dataset is downscaled using residual area-to-point kriging

Stebel, K., Stachlewska, I. S., Nemuc, A., Horálek, J., Schneider, P., Ajtai, N., Diamandi, A., ... Zehner, C. (2021). SAMIRA-SAtellite Based Monitoring Initiative for Regional Air Quality. *Remote Sensing*, *13*(11), 2219. <u>https://doi.org/10.3390/rs13112219</u>

Direct Exploitation: Geostatistical Downscaling

Geostatistical downscaling of S5P-derived surface NO_2 (using the surface-to-column ratio approach) results in improved spatial resolution with realistic spatial patterns.

→ ATMOS 2021 - ESA ATMOSPHERIC SCIENCE CONFERENCE

Madrid domain

ISGlobal —— Ranking Of Cities Urban health study in 1,000 European cities

Guadarrama

TOP 5

San Lorenzo de El Escorial

Cities with the worst mortality burden:

PM _{2.}	5	NO ₂	
	Brescia (ITALY)		Madrid (SPAIN)
2	Bergamo (ITALY)	2	Antwerp
3	Karvinà (CZECH REPUBLIC)	3	Torino
4	Vicenza (ITALY)	4	Paris (FRANCE)
5	Silesian Metropolis (Poland)	5	Milan (ITALY)

https://isglobalranking.org

Urban emissions

- Not known
- Estimate with proxies of activity data
- Three sectors considered: traffic (highway and primary) and residential
- Emission factors unclear (e.g. diesel gate)
- Estimate emission factors from observations

The RETINA algorithm

Emissions

Transport

- Road location/type (OSM)
- Traffic flow (Madrid open data)

Residential

- Population density (GHS)

Meteorology ECMWF

Background concentrations CAMS

Simulation (AERMOD) and Calibration

Assimilation

Mijling, B.: *High-resolution mapping of urban air quality with heterogeneous observations: a new methodology and its application to Amsterdam*, Atmos. Meas. Tech., 13, 4601–4617, https://doi.org/10.5194/amt-13-4601-2020, 2020.

Calibration with surface measurements Leave-one-out cross-validation

New twin-model for atmospheric dispersion

Blink-surface	Blink-3D		
Madrid domain (40 x 43 km²)			
Fast dispersion calculation based on emission kernels calculated by AERMOD			
Simulations for separate emission sectors: traffic, residential, hotspots			
Surface level only	9 horizontal levels, up to 5 km		
10 meter resolution ("street level")	250 meter resolution		
NO2 ratio from Ozone Limiting Method, based on CAMS ozone background	NO2 ratio from CAMS regional ensemble		
Background NO2 taken from CAMS	Background column unknown		

2019-02-13, 12:48 UTC

ground to column

2019-04-16, 13:25 UTC

ground to column

2019-07-26, 13:31 UTC

µmol/m²

ground to column

Column to Ground (sector fit by linear regression)

Estimated emissions for Madrid, 2019

Estimated emissions for Madrid, 2019

Conclusions

- CitySatAir exploits S5P NO₂ data and other sources and high-resolution models for urban AQ mapping
- Primary focus on correcting the underlying emission datasets
- Two parallel approaches in contrasting study sites: Oslo and Madrid
- For the **Oslo case study** we developed and applied two approaches
 - 1. Indirect exploitation of of S5P NO₂
 - Temporal and spatial emission correction for high-resolution urban-scale dispersion models
 - The "calibrated" model output is suitable for assimilating observations from stations and low-cost sensor networks
 - 2. Direct approach: Geostatistical downscaling
 - Geostatistical downscaling with a fine-scale proxy dataset is a a robust method for increasing the spatial resolution of TROPOMI data for urban applications
- For the **Madrid case study** we developed a versatile algorithm for observation-based monitoring of air pollution at street-level
 - Based on the AERMOD dispersion model
 - Dynamically calibrated with recent measurements
 - Capable to assimilate low-cost and reference measurements
 - Urban emissions can be estimated from surface and from space observations. Both agree well.

