
6. Conclusion

1. Neural networks offer a way to drastically increase the performance of classical retrieval algorithms
• Many orders of magnitudes faster than RTMs, successful use in CLOUD product for S5P (operational) and S4

2. Neural network lifecycle chain offers general procedure for replacing RTM by NN
• Allows use of specific NNs for specific problems (e.g. for different types of clouds)

3. Neural networks can provide sufficient accuracy to replace RTM
• finding best structure configuration is challenging, approaches to evaluate and determine well suited structures

have been presented, more investigations are ongoing
4. Neural netowrks allow for new possibilities for inversion algorithms

• Computational performance allows many foward model calls, gradients available
→ possibility for global optimization techniques

4. Evaluation

• Finding a neural network with the optimal performance is very challenging (many aspects impact the results)
• Following key aspects were investigated: 

• Other aspects not (yet) investigated: Optimizer + learning-rate, number of samples, batch size
• For the evaluation Sentinel-4 Clear-sky spectra (5 input, 345 output parameters) were used
• Training settings: 2000 Epochs, batch size: 200, Optimizer: Adam with learning rate 1e-5

1. Scaling
• Scaling the inputs and/or outputs is very important as it

influences the stability of the weights during training

→ Scaling both, inputs and outputs, is necessary

2. Topology
• Selecting the network topology is hard as it is very

arbitrary (key factors: complexity, number hidden layers)

→ 1 hidden layer is insufficient, 3 – 4 hidden layers with
~40000 parameters (5-80-80-80-80-345) is a good choice

3. Activation Functions
- Activation functions are responsible for nonlinearity of the NN
- The following activation functions were evaluated: relu, sigmoid, tanh

→ tanH is the preferred activation function: best relative error (Figure 4.3), smoothest, no discontinuities (Figure 4.4)

4. Sampling
- Parameter distribution in training set is significant→ Importance Sampling
- Comparison for surface height with actual vs. Uniform distribution

→ Desipite worse validation loss during training, NNs trained with actual parameter distribution lead to better results
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1. Why Machine Learning for processing data of Copernicus Satellite Sensors?

• The amount of data from remote sensing satellites that has to be processed, dramatically increased in the recent
years, especially with the Copernicus program

• The processing is even further challenging since there are near real time (NRT) requirements for many products
• Therefore, the retrieval algorithms not only have to be accurate, but also very fast aswell
• In recent years, the application of machine learning techniques, especially neural networks, has become increasingly

popular in order to improve the performance of classical retrieval algorithms
• A successful example is the use of neural networks for the retrieval of the operational CLOUD product of the

Sentinel-5 Precursor satellite (S5P)

Figure 1.1: cloud fraction (CF), cloud top pressure (CTP) and the cloud optical thickness (COT) from the operational S5P CLOUD product
from 08-08-2019

2. Inversion with a radiative transfer model vs inversion with a neural network

• Atmospheric retrieval can often be formulated in terms of mathematical 
inversion problems

• There, the goal is to find a set of parameters 𝑥 that minimize the 
residual 𝐹 𝑥 − 𝑦 2 between a known vector 𝑦 and the mapping of 
the parameters 𝐹(𝑥) - where 𝐹 is a predefined function

• In the context of atmospheric retrieval algorithms 𝑥 then represents
the state of the atmosphere, 𝑦 a measured spectrum and 𝐹 a 
radiative transfer model (RTM) that predicts the spectrum 𝐹 𝑥

• For the inversion algorithm the specific implementation of 𝐹 is not 
relevant – it can be a complex RTM or a fast neural network (NN)

• GODFIT (GOME Direct FITting) is an example for an inversion algorithm with a RTM as forward model
• It produces the S5P ozone total column product, is computationally very expensive but has no NRT requirements

• ROCINN (Retrieval Of Cloud Information using Neural Networks) is an example for an inversion algorithm with NNs as 
forward models
• It is part of the S5P CLOUD product and has strict NRT requirements

5. Application

• Neural networks for S5P already used for operational CLOUD product
• Neural networks for S4 implemented in first version of CLOUD processor
• Current cleark-sky neural network for S4 has slightly better performance than

clear-sky network for S5P, cloudy network for S4 needs further improvement
• Different NNs for different scene types and cloud models are in use

(clear-sky, cloudy CRB, cloudy CAL), development for other cloud types
(ice-clouds) is ongoing

Figure 2.2: The solver can either use a RTM or a NN as forward model

Figure 2.1: Example of an observed and fitted spectrum in the
O2 A-band – the fitted spectrum is a linear combination of a clear

sky- and fully cloudy spectrum weighted by the cloud fraction

Figure 3.1: Illustration of the complete NN lifecycle – from data sampling to deployment

3. How to get from a radiative transfer model to a neural network?

• In order to replace the RTM of an inversion algorithm by a NN a general method was developed which is applicable
to arbitrary RTMs and thus can be used for many retrieval algorithms

• It consits of the following steps:
1. Smart sampling: 

The training data needed for the NN 
consists of input / output pairs. In case of the ROCINN 
algorithm the input consists of up to seven parameters:

• Surface parameters (suface height, surface
albedo)

• Geometry (solar zenith angle, viewing zenith
angle, relative azimuth angle)

• Cloud properties (cloud height, cloud optical
thickness) – in case of cloudy scenes

Samples of this input space are chosen with the Halton
sequence. Additionally, Importance Sampling can be
used to account for the distribution of the different parameters.

2. Generation of the training data: 
• The corresponding outputs are generated using the RTM
• For ROCINN, these are spectra in the O2 A-band, calculated by the RTM VLIDORT
• The final results are then saved (together with the inputs) in a netCDF-4 file

3. Scaling of the data: 
Inputs and outputs of the training data are scaled to the interval 0,1 to improve the stability of the weights
during the training process

4. Training of the NN: 
Tools based on keras were implemented which allow:

• easy definition of the network topology, activation functions and training parameters
• saving of the network as well as metadata in an hdf5 file
• iterative training by loading of pre-trained networks

5. Validation: 
After the training, the NN is validated with an indenpendent data set

6. Deployment of the NN: 
A neural network module was developed which implements:

• Reading of NNs defined in hdf5 files at runtime
• Transparent scaling of inputs and outputs
• Computation of the derivatives
• Support of arbitrary network topologies and different activation functions

Figure 3.2: Histogram of the surface height from data of
the whole earth

Figure 4.1: Relative errors of NNs trained with input and/or
output scaling ar no scaling at all

Figure 4.2: Validation losses during training for different 
NN topologies

Figure 4.3: Relative errors of NNs with different activation functions
Figure 4.4: Mean spectra-radiance depending on the cosine of the
relative azimuth angle for NNs with different activation functions

1. Scaling of the data 2. Topology of the network
3. Activation Functions of the neurons 4. Sampling of the parameters for the training set

Figure 4.5: Surface distribution for the two
training sets

Figure 4.6: Validation loss during training for
NNs with different training sets

Figure 4.7: Relative errors of NNs with
different training sets

Model # parameters exec time exec. time with gradient

RTM Vlidort, 
32 threads

- 17h, 9min, 0.625s -

S5P Clear Sky
(5-100-100-107)

21507 0.62s 3.48s

S4 Clear Sky
(5-80-80-80-80-345)

47865 3.28s 14.67s

Table 5.1: Computational performance for generating 250000 spectra
Figure 5.1: Relative errors for S5P (top) and 

S4 (bottom) NNs (clear-sky + cloudy)


