

Application of Machine Learning Techniques for the retrieval of Cloud Properties for the Copernicus Satellites Sentinel-4 (S4) and TROPOMI / Sentinel-5 Precursor (S5P)

Fabian Romahn¹, Diego G. Loyola¹, Victor Molina Garcia¹, Ronny Lutz¹ (1) German Aerospace Center (DLR)

1. Why Machine Learning for processing data of Copernicus Satellite Sensors?

- The amount of data from remote sensing satellites that has to be processed, dramatically increased in the recent years, especially with the Copernicus program
- The processing is even further challenging since there are near real time (NRT) requirements for many products
- Therefore, the retrieval algorithms not only have to be accurate, but also very fast as well
- In recent years, the application of machine learning techniques, especially neural networks, has become increasingly popular in order to improve the performance of classical retrieval algorithms
- A successful example is the use of neural networks for the retrieval of the operational CLOUD product of the • Sentinel-5 Precursor satellite (S5P)

2. Inversion with a radiative transfer model vs inversion with a neural network

- Atmospheric retrieval can often be formulated in terms of mathematical inversion problems
- There, the goal is to find a set of parameters x that minimize the residual $||F(x) - y||_2$ between a known vector y and the mapping of the parameters F(x) - where F is a predefined function
- In the context of atmospheric retrieval algorithms x then represents the state of the atmosphere, y a measured spectrum and F a radiative transfer model (RTM) that predicts the spectrum F(x)
- For the inversion algorithm the specific implementation of F is not relevant – it can be a complex RTM or a fast neural network (NN)

Figure 2.1: Example of an observed and fitted spectrum in the O₂ A-band – the fitted spectrum is a linear combination of a clear sky- and fully cloudy spectrum weighted by the cloud fraction

- **GODFIT** (**GOME D**irect **FIT**ting) is an example for an inversion algorithm with a RTM as forward model
 - It produces the S5P ozone total column product, is computationally very expensive but has no NRT requirements
- ROCINN (Retrieval Of Cloud Information using Neural Networks) is an example for an inversion algorithm with NNs as forward models
- It is part of the S5P CLOUD product and has strict NRT requirements

Inversion with RTM as Forward Model

3. How to get from a radiative transfer model to a neural network?

• In order to replace the RTM of an inversion algorithm by a NN a general method was developed which is applicable to arbitrary RTMs and thus can be used for many retrieval algorithms

Inversion with NN as Forward Model

4. Evaluation

- Finding a neural network with the optimal performance is very challenging (many aspects impact the results)
- Following key aspects were investigated:
 - **1. Scaling** of the data
- 2. Topology of the network

2. Topology

- **3. Activation Functions** of the neurons **4. Sampling** of the parameters for the training set
- Other aspects not (yet) investigated: Optimizer + learning-rate, number of samples, batch size
- For the evaluation Sentinel-4 Clear-sky spectra (5 input, 345 output parameters) were used
- Training settings: 2000 Epochs, batch size: 200, Optimizer: Adam with learning rate 1e-5
- 1. Scaling
- Scaling the inputs and/or outputs is very important as it influences the stability of the weights during training

Selecting the network topology is hard as it is very
arbitrary (key factors: complexity, number hidden layers)

		Error Histogra 2000 epochs,	IM for different types of scaling , tanH activation, 5-100-100-345 topology	
500000 -	rel. error me	dian input + output scaling:	0.4277 %	input + ou
	rel. error me	dian output scaling:	0.7395 %	output sca
	rel. error me	dian no scaling:	3.6729 %	no scaling
	rel. error me	dian input scaling:	1.4993 %	input scal

dation losses for different network topologies

- It consits of the following steps:
 - **1.** Smart sampling:

The training data needed for the NN consists of input / output pairs. In case of the ROCINN algorithm the input consists of up to seven parameters:

- Surface parameters (suface height, surface albedo)
- Geometry (solar zenith angle, viewing zenith angle, relative azimuth angle)
- Cloud properties (cloud height, cloud optical thickness) – in case of cloudy scenes

Samples of this input space are chosen with the Halton sequence. Additionally, Importance Sampling can be used to account for the distribution of the different parameters.

- **2.** Generation of the training data:
 - The corresponding outputs are generated using the RTM
 - For ROCINN, these are spectra in the O₂ A-band, calculated by the RTM VLIDORT
 - The final results are then saved (together with the inputs) in a netCDF-4 file
- 3. Scaling of the data:
 - Inputs and outputs of the training data are scaled to the interval [0,1] to improve the stability of the weights during the training process
- 4. Training of the NN:

Tools based on keras were implemented which allow:

- easy definition of the network topology, activation functions and training parameters
- saving of the network as well as metadata in an hdf5 file
- iterative training by loading of pre-trained networks
- 5. Validation:

After the training, the NN is validated with an independent data set

6. **Deployment** of the NN:

A neural network module was developed which implements:

3. Activation Functions

- Activation functions are responsible for nonlinearity of the NN
- The following activation functions were evaluated: relu, sigmoid, tanh

Figure 4.4: Mean spectra-radiance depending on the cosine of the relative azimuth angle for NNs with different activation functions

Error histograms for different samplings of the training data se

Figure 4.3: Relative errors of NNs with different activation functions

Surface height distribution

 \rightarrow tanH is the preferred activation function: best relative error (Figure 4.3), smoothest, no discontinuities (Figure 4.4)

Validation loss for different samplings of the training data se

- 4. Sampling
- Parameter distribution in training set is significant \rightarrow Importance Sampling
- Comparison for surface height with actual vs. Uniform distribution

10 ⁻³									
loss		5-20-345 5-50-345 5-100-345							
10 ⁻⁴		5-200-345 5-20-80-345 5-50-150-345 5-100-100-345 5-100-200-345 5-100-100-100-345 5-80-80-80-80-345 5-100-100-100-100-345							
1	0	250	500	750 :	1000 epoch	1250 1	500 17	750 2	000

Figure 4.2: Validation losses during training for different NN topologies \rightarrow 1 hidden layer is insufficient, 3 – 4 hidden layers with ~40000 parameters (5-80-80-80-80-345) is a good choice

radiance for different activation function

- Reading of NNs defined in hdf5 files at runtime
- Transparent scaling of inputs and outputs
- Computation of the derivatives
- Support of arbitrary network topologies and different activation functions

5. Application

- Neural networks for S5P already used for operational CLOUD product
- Neural networks for S4 implemented in first version of CLOUD processor
- Current cleark-sky neural network for S4 has slightly better performance than clear-sky network for S5P, cloudy network for S4 needs further improvement
- Different NNs for different scene types and cloud models are in use (clear-sky, cloudy CRB, cloudy CAL), development for other cloud types (ice-clouds) is ongoing

Model	# parameters	exec time	exec. time with gradient
RTM Vlidort <i>,</i> 32 threads	-	17h, 9min, 0.625s	-
S5P Clear Sky (5-100-100-107)	21507	0.62s	3.48s
S4 Clear Sky (5-80-80-80-80-345)	47865	3.28s	14.67s

Table 5.1: Computational performance for generating 250000 spectra

S4 (bottom) NNs (clear-sky + cloudy)

neural networks

Error Histograms

clear-sky median: 0.141

6. Conclusion

- 1. Neural networks offer a way to **drastically increase the performance** of classical retrieval algorithms
 - Many orders of magnitudes faster than RTMs, successful use in CLOUD product for S5P (operational) and S4
- 2. Neural network lifecycle chain offers general procedure for replacing RTM by NN
 - Allows use of specific NNs for specific problems (e.g. for different types of clouds)
- 3. Neural networks can provide **sufficient accuracy** to replace RTM
 - finding best structure configuration is challenging, approaches to evaluate and determine well suited structures have been presented, more investigations are ongoing
- 4. Neural netowrks allow for **new possibilities for inversion algorithms**
 - Computational performance allows many foward model calls, gradients available \rightarrow possibility for global optimization techniques