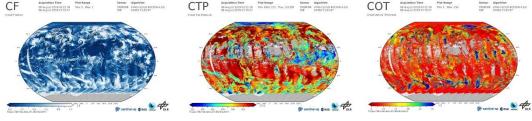


ATM05 2021

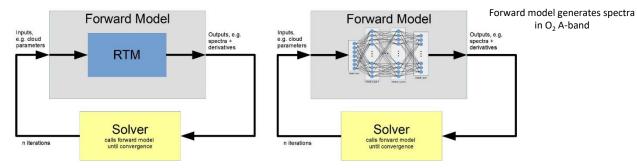
Application of Machine Learning Techniques for the retrieval of Cloud Properties for the Copernicus Satellites Sentinel-4 (S4) and TROPOMI / Sentinel-5 Precursor (S5P)

> Fabian Romahn, Diego G. Loyola, Víctor Molina García, Ronny Lutz German Aerospace Center (DLR) 25/11/2021


Application of Machine Learning Techniques for the retrieval of Cloud Properties for the Copernicus Satellites Sentinel-4 (S4) and TROPOMI / Sentinel-5 Precursor (S5P)

1. Sentinel-5 Precursor (S5P) and Sentinel-4 (S4) are passive earth observation satellites DLR is responsible for the operational CLOUD product

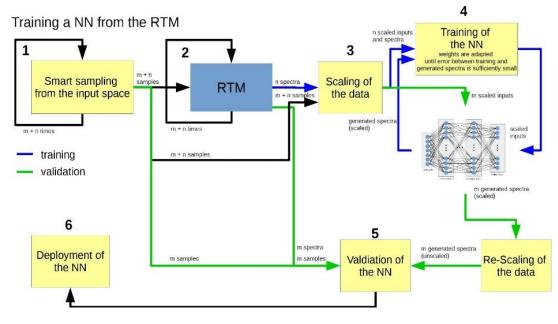
Inversion with NN as Forward Model


in O₂ A-band

S5P operational CLOUD product

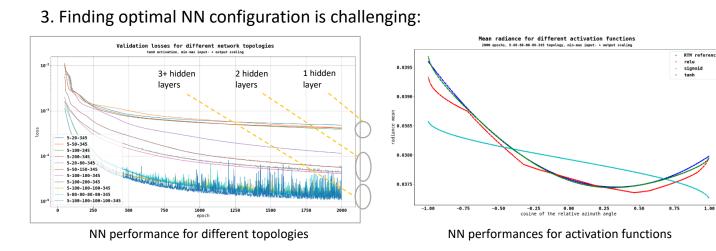
Challenge: Near real time requirements (NRT) for large amounts of data Solution: Use neural network (NN) instead of radiative transfer model (RTM) in retrieval:

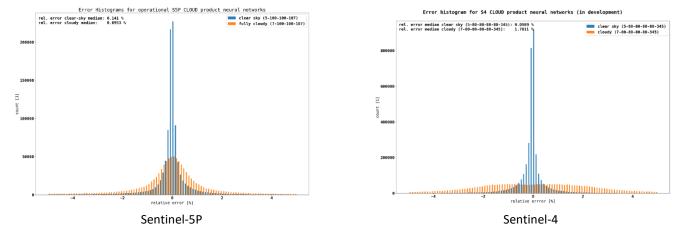
Inversion with RTM as Forward Model



Sentinel-5P

Sentinel-4


2. How to replace RTM by NN? \rightarrow NNLifecycle chain:


→ ATMOS 2021 - ESA ATMOSPHERIC SCIENCE CONFERENCE

Application of Machine Learning Techniques for the retrieval of Cloud Properties for the Copernicus Satellites Sentinel-4 (S4) and TROPOMI / Sentinel-5 Precursor (S5P)

4. Operational Performance:

5. Conclusion and Impact:

 NNs offer way to drastically improve performance of classical retrieval algorithms

model	# parameters	exec. time	exec. time with grad.
RTM VLIDORT, 32 threads	-	17h, 9min,0.62 5s	-
S5P Clear Sky (5-100-100-107)	21507	0.62s	3.48s
S4 Clear Sky (5-80-80-80-80- 345)	47865	3.28s	14.67s

- many orders of Computational performance for generating 250000 spectra magnitude faster than RTMs
- allow meeting necessary NRT requirements of today's satellites
- 2. NN lifecycle chain offers general procedure for replacing RTM by NN \rightarrow allows use of specific NNs
- 3. NNs can provide sufficient accuracy to replace RTM
 - Finding the best structure / configuration is challenging

4. NNs allow new possibilities for inversion algorithms

 Computational performance increase allows many forward model calls, gradients are available
→ Global optimization techniques

For further questions, please contact me: Fabian.Romahn@dlr.de

→ ATMOS 2021 - ESA ATMOSPHERIC SCIENCE CONFERENCE