First results from comparison ERA5 and Aeolus measurements: Lidar measurements to Identify Streamers and analyze Atmospheric waves (LISA) (Aeolus+Innovation)

Michal Kozubek¹, Katerina Podolska¹, Jaroslav Chum¹, Tereza Sindelarova¹, Jan Lastovicka¹, Lisa Küchelbacher², Franziska Trinkl², Sabine Wüst², Michael Bittner^{2,3}

1)Institute of Atmospheric Physics CAS

2) German Aerospace Center, DLR-DFD, Oberpfaffenhofen, Germany

3) Institute for Physics, University Augsburg, Augsburg, Germany

Motivation

- Aeolus measurements provide wind data (meridional or zonal component) for the whole stratosphere
- ERA5 is available for the whole AEOLUS period on hourly basis with grid points 0.25° in lat/lon
- Streamer events occur mainly in the middle latitude over Atlantic
- ERA5 will help us to see dynamics not only in the middle atmosphere but in polar region as well
- Analysis of Doppler sounding or microbarographs can show us condition in lower or higher levels

Infrasound observations at WBCI

Frequency range of interest, f = 0.0033-0.4 Hz

Calm periods

02.03.-08.03.2020 09.03.-14.03.2020 28.03.-10.04.2020 19.04.-27.05.2020 09.11.-15.11.2020 12.12.-22.12.2020 30.12.20-06.01.21 21.01.-20.02.2021 28.02.-07.03.2021 13.03.-24.03.2021 29.03.-07.04.2021

Σ 153 days

Streamer(-like) events

06.02.-10.02.2020 31.08.-03.09.2020 05.09.-11.09.2020 03.11.-07.11.2020 21.11.-25.11.2020 23.02.-27.02.2021 09.03.-12.03.2021

Σ 35 days

Homogeneity testing Streamer 1

Statistical description ERA5 dataset

Homogeneity testing, using AIC (Akaike's information criterion), Chapter 5.1.1

AIC = - (maximumlog - likelihood) + 2(number of free parameters) statistics for whole AEOLUS measurements period but the comparison will be applied mainly on the streamer events.

- ▶ the AIC of the pooled model is $AIC_A = (T+T_1) \log(\sigma_A^2) + 2(p_A + intercept + 1)$, where σ_A^2 is the pooled error variance and p_A is the order chosen to fit the pooled data set.
- Decision
- If AIC_J < AIC_A switch to the new model, since there is a change in the structure of the time series.
- If AIC_J ≥ AIC_A pool the two data sets, since two data sets are considered to be homogeneous

Homogeneity testing Streamer 1

Fit statistics comparison for streamer event 1.- 9.11. 2020

data segment 40° N - 60° N latitudes meets the homogeneity criterion slightly worse than whole file (40° N-90° N), larger variance,

	Fit Statistics 40° N - 60° N						
	-2 RLL (Res L	655.62					
	AIC (Akaike's information criterion)			653.60			
	AICC (Corrected AIC)			653.74			
	BIC (Bayesian	655.60					
Covariance Parameter Estimates							
C	ov Parm	Estimate	St	Standard Er			
Vä	ar (RSmooth)	174.19		56.7			
R	esidual	1.4553	0.5				

	Fit Statistics 40° N - 90° N							
	-2 RLL (Res Lo	915.5						
	AIC (Akaike's information criterion)			913.5				
	AICC (Corrected AIC)			913.48				
	BIC (Bayesian	BIC (Bayesian information criterion)						
Covariance Parameter Estimates								
Cov Parm		Estimate	Standard E		ror			
Var (RSmooth)		137.23	42		.78			
Residual		4.453		0.36				

Comparison of ERA5 and AEOLUS

Comparison of ERA5 and AEOLUS

Comparison of ERA5 and AEOLUS

- Comparison of zonal wind at 150 and 175 hPa from AEOLUS and ERA5 show that Aeolus measurements are biased
- The difference between ERA5 and Aeolus are different for each zonal bends (table bellow)
- The biggest one is for higher latitudes
- The main features are very similar

	65°-60°N	60°-55°N	55°-50°N	50°-45°N
150 hPa	20	20	15	9
175 hPa	16	20	15	8

Measurement setup for GWs,

Absolute microbarometers and Continuous Doppler sounding

Small triangle, 3 freq. since 2014 Tx1, Tx2, Tx3 at each location, frequency of 3.59, 4.65 and 7.04 MHz transmitted Digital ionosonde is close to Tx2. Rx1 is at the Institute in Prague

Ę

Large array, since autumn 2019 (Tx4, Tx5; Rx2 added) 3.59 and 4.65 MHz

Large scale array of microbarometers around Tx5,

Some considerations

- signals possibly propagated through the streamer event region
- propagation of infrasound against stratospheric winds
 - signal refraction at higher altitudes (thermospheric wave guide?)
 - increased signal absorption, at higher frequencies stronger

Infrasound arrivals at WBCI from NW

- decrease of signal frequencies on 5-6 November from ~0.2 Hz to 0.04 Hz
- signatures of an amplitude decrease at the same time, but not conclusive

Azimuth of infrasound arrival, from January 2020 to April 2021

Comparison of GW characteristics in the troposphere, from microbarographs for calm and streamer&streamer-like periods

Vertical lines mark Q1, Q3, Q3+1.5(Q3-Q1), Q3+3(Q3-Q1); where Q1(Q3) is lower (upper) quartile

Conclusions

- ERA5 dataset streamer event 1 meets the conditions of global homogeneity using AIC.
- BIC does not give much better results and is computationally more demanding
- Streamer events are rather small-scale phenomena (cf. SSW). Variations of stratospheric winds related to streamer events influence signals propagating through the region of the streamer event
- The observations can strongly depend on the mutual location of the infrasound source, the region influenced by the streamer event, and the infrasound array
- Insufficient statistics for pure streamer event
- Some detection for 2-D GW analysis from microbarometer network

Thank you for attention

Support by the Czech Science Foundation via Grant 21-03295S and LISA - Lidar measurements to Identify Streamers and analyze 459 Atmospheric waves, AEOLUS-INNOVATION, Contract No. 4000133567/20/I-BG