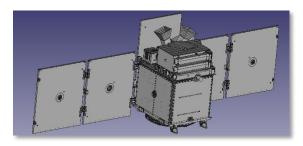


ATMOS 2021

ALTIUS Earth Watch Element: Project Implementation and Status

Daniel Navarro Reyes, ALTIUS Project Office ESA/ESTEC 22/11/2021


eesa

altius

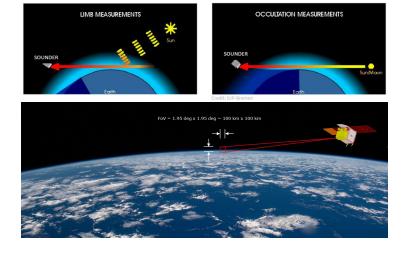
Contents

- What is ALTIUS, Goals and Users
- Design evolutions since ATMOS 2018
- Current status of the project activities
- Performance
- Plans for the rest of the project

https://www.esa.int/Applications/Observing the Earth/Altius

What is ALTIUS

- Limb sounder mission for the monitoring of the distribution and evolution of stratospheric ozone at high vertical resolution
- Support of operational services and long term trend monitoring
- Other, secondary products, also possible pending retrieval performance
- Concept developed by the team of D. Fussen at BISA
 => See the presentation following this one
- Implemented by the ESA as part of the Earth Watch Programme
- Presented at ATMOS 2018 <u>http://atmos2018.esa.int/files/2_ALTIUS%20Daniel%20Navarro.pdf</u>


Observation concept: Limb sounder

- Monochromatic 2-D snapshots taken by three separated cameras:
 - UV, VIS, and NIR
- Snapshot wavelength tunable (FPI and AOTF)
- Observations contain several snapshots at different wavelengths
 - Bright Limb

→ ATMOS 2021 - ESA ATMOSPHERIC SCIENCE CONFERENCE

- Occultation: Sun, bright stars and planets
- FoV ~ 100 x 100 km at tangent point
- Several imaging modes for spectral, radiometric and pointing calibration
- Agile platform supporting these observations modes

Band 250nm S/OOB sp1: 91.5, sp2: 91.5

Goals and Users

- Only few missions providing limb measurements, several might terminate within the next few years => ALTIUS will fill therefore an upcoming data gap
- Stratospheric ozone profiles, complementary to total ozone column measurements (GOME-2, Sentinel-5P) used for operational data assimilation
- High importance for the atmospheric chemistry modelling community, for use as input to climate models and their validation
- ALTIUS data will extend the existing GCOS ozone profile ECV as produced with the ESA CCI ozone project

Mission Requirements

• MRD (ALT-RS-ESA-MI-0075) endorsed by MAG

• Primary Products, stratospheric zone, operational and scientific

Primary mission requirements	ALT-MRD- PRI-010	ALT-MRD- PRI-020	ALT-MRD- PRI-030
Component	Ozone	Ozone	Ozone
Altitude range [km]	15-45	20-45	15-45
Target vertical/across-track resolution [km]	0.5 / 50	0.5 / 50	1/20
Threshold vertical/across-track resolution [km]	1/100	1 / 100	2 /100
Along-track sampling [km]	200	200	NA
Target uncertainty [%]	5	3	10
Threshold uncertainty [%]	20	10	30
Target absolute uncertainty [ppbv]	50	50	50
Threshold absolute uncertainty [ppbv]	100	100	100
Coverage	Global	Global	Polar
Data latency	< 3 hrs	4 weeks	4 weeks

• Secondary products as scientific goals: other components and magnitudes

• Aerosols, NO2, H2O, BrO, OClO etc...

Key System Requirements

• Spectral range and resolution

Optical Channel	Mandatory spectral range	FWHM	Observation Mode	
UV	250- 280 nm	< 10 nm	Occultation	
	280-290 nm	< 5 nm	Limb, Occultation	
	290 - 310 nm	< 3 nm	Limb, Occultation	
	310 – 355 nm	< 2.5 nm	Limb, Occultation	
VIS	440 - 675 nm	< 75 cm ⁻¹ (= 1.2 nm @ 400nm)	Limb, Occultation	
NIR	600 – 1020 nm	< 75 cm ⁻¹ (= 6.5 nm @ 940nm)	Limb, Occultation	

• Signal to Noise ratio

Limb scattering geometry												
	Wavelength (nm)											
		250	300	350	450	500	550	600	650	700	800	1020
	5	1	55	1120	5660	3940	2210	1400	1170	908	831	2030
	10	1	55	1130	4790	3290	1800	1090	913	707	631	1480
	15	1	56	1130	4060	2760	1470	850	711	551	479	1080
	20	1	58	1100	3430	2310	1200	662	554	429	365	791
	25	1	59	971	2910	1940	978	516	431	334	278	579
-	30	2	61	765	2460	1630	801	402	336	260	212	425
Tangent Altitude (km)	35	2	64	568	2080	1370	657	313	262	203	162	312
le (40	2	67	407	1760	1150	540	244	204	158	124	230
ituc	45	2	73	291	1490	968	445	190	159	123	95	169
Alt	50	2	78	208	1260	814	366	148	124	96	73	125
cent	55	2	65	147	1070	685	302	115	96	75	56	92
ang	60	2	44	99	904	577	250	90	75	58	43	68
Г	65	3	26	62	765	486	207	70	58	45	33	51
	70	2	14	36	648	410	172	54	45	35	25	38
	75	1	7	18	548	345	142	42	35	27	20	28
	80	0	3	9	464	291	118	33	28	21	15	21
	85	0	1	4	393	246	99	26	22	17	12	16
	90	0	0	1	332	207	82	20	17	13	9	12

Only values in bold apply, values in italics are for reference.

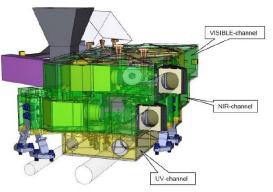
• Stray light to signal ratio

			-									
				L	imb scatt	ering geo	metry					
						Wavele	ngth (nm)					
		250	300	350	450	500	550	600	650	700	800	1020
	5	2.273	0.055	0.003	0.001	0.001	0.002	0.002	0.003	0.003	0.004	0.002
	10	2.222	0.054	0.003	0.001	0.001	0.002	0.003	0.003	0.004	0.005	0.002
	15	2.174	0.053	0.003	0.001	0.001	0.002	0.004	0.004	0.005	0.006	0.003
	20	2.128	0.052	0.003	0.001	0.001	0.002	0.005	0.005	0.007	0.008	0.004
	25	2.055	0.051	0.003	0.001	0.002	0.003	0.006	0.007	0.009	0.011	0.005
	30	2.000	0.049	0.004	0.001	0.002	0.004	0.008	0.009	0.011	0.014	0.007
a l	35	1.923	0.047	0.005	0.002	0.002	0.005	0.010	0.011	0.015	0.019	0.010
Tangent Altitude (km)	40	1.841	0.045	0.008	0.002	0.003	0.006	0.012	0.015	0.019	0.024	0.013
itud	45	1.754	0.041	0.010	0.002	0.003	0.007	0.016	0.019	0.024	0.032	0.018
tAlt	50	1.649	0.039	0.014	0.002	0.004	0.008	0.020	0.024	0.031	0.041	0.024
lgen	55	1.523	0.047	0.020	0.003	0.005	0.010	0.026	0.031	0.040	0.054	0.032
Tar	60	1.288	0.068	0.030	0.003	0.005	0.012	0.034	0.040	0.052	0.070	0.044
	65	1.200	0.115	0.048	0.004	0.006	0.014	0.043	0.051	0.066	0.091	0.059
	70	1.705	0.213	0.085	0.005	0.007	0.017	0.055	0.066	0.085	0.118	0.080
	75	1.705	0.437	0.164	0.005	0.009	0.021	0.071	0.085	0.110	0.153	0.107
	<u>80</u>	1.705	0.974	0.352	0.007	0.010	0.026	0.091	0.109	0.140	0.199	0.143
	85	1.705	2.381	0.845	0.008	0.012	0.031	0.117	0.140	0.181	0.259	0.192
	90	1.705	2.381	0.845	0.009	0.014	0.037	0.150	0.180	0.231	0.334	0.257

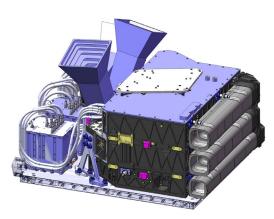
Design evolutions (1/2)

 $D\Gamma\Gamma O \Gamma (2010)$

- Instrument configuration modified due to
 - (1) Technical and programmatic trade off on original SWIR Channel has led to adoption 600-1020nm NIR Channel based on similar design as VIS (Optics and detector)
 - (2) trade-off of spectral range versus improved resolution (for NO₂ retrieval)
 - (3) Trade-off of spectral range versus spectral leak rejection
- Current design
 - ensures stratospheric O3 retrieval in bright limb, stellar and solar occultation
 - should be capable to observe aerosol extinction, NO2, and others...


UV	250-400 nm	UV
VIS	400-800 nm	VIS
SWIR	800-1800 nm	NIR

AFTER (2021)						
UV	250-355 nm	(3)				
VIS	440-675	(2)(3)				
NIR	600-1020	(1)(3)				


Design evolutions (2/2)

BEFORE

AFTER

- Addition of long baffles => reduction of far out-of-filed stray light
- Increase of UV stellar occultation aperture => improve SNR
- Use of state-of-the art reflective coatings
 => Improve SNR (VIS and NIR): Proba-V evolution
 => Improve out-of-band rejection (UV) from NIR region: cold coating
- Tuning of FPI Bragg-mirrors coating (UV)
 => improve SNR/out-of-band rejection
- Band-pass filters:
 - => Improve out-of-band rejection (UV) from NIR region
 - \Rightarrow Additional filter to limit zero-order effects in NIR (AOTF)
- Additional field stop to limit zero-order effects (VIS/NIR AOTF's)

Project Status - Overview

eesa eesa

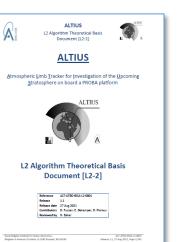
- System (Platform + Instrument + CAL) phase B2CD
 - Kicked-off in January '20
 - Successful PDR in October '20
 - CDR in September '22
 - FAR expected January '24
- Payload Data Ground Segment (+ E2E + VAL) phase B2CD
 - Kicked-off in Dec '20
 - Successful PDR in July '21
 - Successful E2E PDR in Sep '21
 - CDR in Q3 '22
- Launcher procurement on-going => Launch May 2025

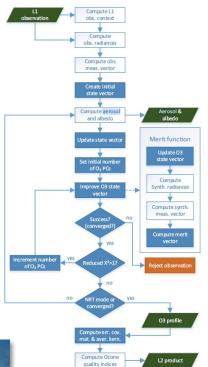
Project Status - Instrument

- Phase C on-going with CDR expected in July '22
- Optical sub-assemblies: coatings qualified, structural models under test
- Fabry-Perot interferometers engineering model manufacturing
- Electronics detail design, parts manufacturing on going
- Optical benches structural models finished
- Mechanism drivers prototypes tested, engineering models dev on going
- AOTF crystal manufacturing on-going
- Baffles structural models on-going, MLI mock-up finished

Project Status - Platform

- Subsystems undergoing phase C activities, engineering models being built and tested.
- STM already qualified
- Thrusters have been qualified
- Avionics engineering model testing on-going
- Battery CDR beginning '21
- Panel manufacturing to start soon
- Some off-the-shelf items already provided as flight models

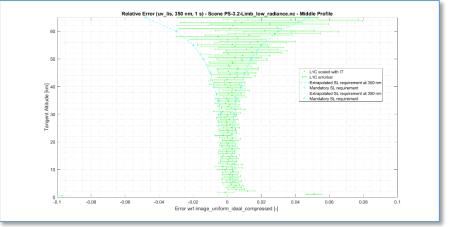


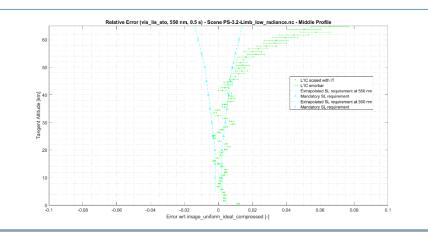

Project Status – Ground Segment

eesa eesa eesa

- PDGS + E2E Simulator + VAL
 - PDR passed
 - E2E passed:
 - E2E SW requirements, design, and validation plans
 - L2 ATBD's for NRT O3 and other byproducts.
 - Algorithm validation plans.
 - Geophysical validation approach
- FOS
 - CDR passed
- Ground Stations
 - RF coordination, submission to ITU May '22

Ozonesonde


Lidar

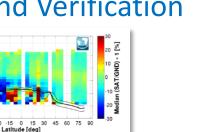

Project Status – Preliminary Performance

SPS

- System Performance Simulator (SPS) + synthetic calibration data
- L1c (Radiometrically corrected, georeferenced, stray light removed)
- Low radiance scene imb radiances (D:\SPS\ALTIUS SPS DATA\BISA\PS-3 Scene inputs\PS-3.2-Limb low radiance.nc Tangent altitude · 300 20 [km Y: 1.728e+1 25 [kn 30 [km 101 35 [km 40 [km 45 [km 50 [km 55 [km 60 [km 65 [km 70 [km 75 [km] 80 [km 85 [km 90 [km] 95 [km]

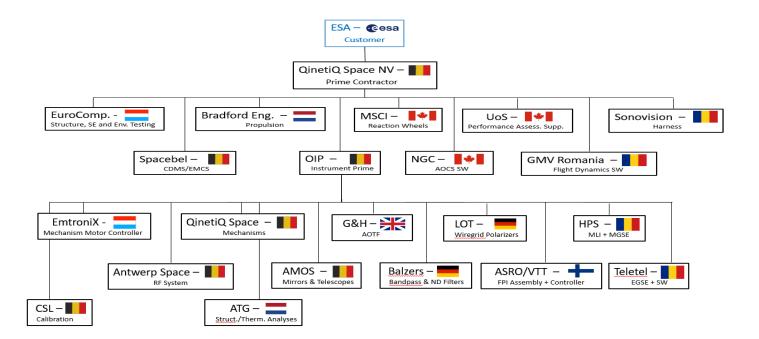
eesa

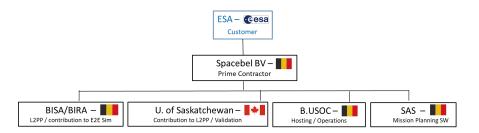
 Stray light requirement as reference for the L1c error (L1c – ideal_signal)/ideal_signal


Launch and Operations

- Launch expected in May 2025 with Vega-C
- Operations run from ESA Redu
- Phase E1, about 6 months
 - LEOP and Satellite commissioning
 - System (Instrument, satellite, L1 processing) Calibration and Verification
 - Mission Geophysical Validation
 - Cross-validation, ground measurements; A.O.
- Phase E2, about 3 years (extendable to 5 years)
 - 80% operational products: O3 NRT, O3 consolidated, and by-products
 - 20% secondary products and repeat CALVAL

esa





Acknowledgments

To our Industrial and Institutional Partners

Questions...?

