An improved TROPOMI tropospheric NO₂ research product over Europe

Song Liu^{1,4}, **Pieter Valks**¹, Sora Seo¹, Gaia Pinardi², Jian Xu¹, Ka Lok Chan¹, R. Lutz¹, A. Argyrouli¹, Ehsan Khorsandi¹, Frank Baier¹, Steffen Beirle³, M .Van Roozendael² and D. Loyola¹

German Aerospace Center (DLR), Wessling, Germany
Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Max-Planck-Institut für Chemie (MPIC), Mainz, Germany
Southern University of Science and Technology, Shenzhen, China

ESA ATMOS-2021 Conference, 22-26 Nov. 2021 | Virtual Event

Knowledge for Tomorrow

Trop. NO₂ retrieval

Trop. NO₂ retrieval

DOAS slant column retrieval

ln	$\left[\frac{I(\lambda) + offset}{I^0(\lambda)}\right]$	$= -\sum_{g} S_{g} \sigma_{g}(\lambda) - \alpha_{R} R(\lambda) - P(\lambda)$
----	---	--

fitting window λ	405-465 nm	
cross-sections $\sigma_g(\lambda)$	$ NO_2 \mbox{Vandaele et al. (2002) 220K} \\ O_3 \mbox{Brion et al. (1998) 228K} \\ H_2O_{vap} \mbox{Rothman et al. (2010) 293K, rescaled as in Lampel et al. (2015)} \\ O_4 \mbox{Thalman and Volkamer (2013)} \\ H_2O_{liq} \mbox{Pope and Fry (1997) 297K, smoothed as in Peters et al. (2014)} $	
Ring effect $R(\lambda)$	Ring reference spectrum (pseudo absorber)	
polynomial $P(\lambda)$	5 orders	
offset	Intensity offset correction	
de-striping correction	a posteriori box-car averaging method	

Feb 2019

SCD difference 5 Feb. 2019

SCD (scaled by AMF_{geo})

Stratosphere-Troposphere Separation (STS)

- ✓ Modified reference sector method
 - → use TROPOMI measurements over clean areas and clouded scenes
 - → improved treatment of polluted and cloudy pixels by weighting factors

STRatospheric Estimation Algorithm from MPI Mainz (STREAM)

Directional-dependent STREAM

Directional-dependent STREAM 7

Total column

0.4

0.3

 \neg diurnal variation in stratospheric NO₂

-70[°]

-50[°]

-10[°] ~ 0

~ -60

ິ~ -40ິ

-30[°] ~ -20[°]

- TROPOMI NO₂ columns show dependency on VZA 7
- DSTREAM divides the orbit swath into western, central, eastern 7 segments

0.2

0.1

3.0

3.5

4.0

4.5

DSTREAM

-70° ~ -60

-50° ~ -40

-30° ~ -20

-10°~0

10[°] ~ 20[°]

Tropospheric AMF calculation

- depends strongly on surface albedo, clouds, a priori profiles.....
- describes the sensitivity to NO₂

Liu et al., AMT, 2019

Feb 2019

AMF calculation – Surface Albedo

OMI LER climatology

- based on 4 years of OMI LER (2004-2007) for 440 nm
- Resolution: $0.5^{\circ} \times 0.5^{\circ}$

Geometry-dependent Lambertian equivalent reflectivity (GE_LER)

- consistent with NO₂ retrieval
- generated using a trained neural network and DOAS results from TROPOMI spectra (FP_ILM algorithm)
- advantages
 - high resolution: $0.1^{\circ} \times 0.1^{\circ}$
 - actual surface conditions especially snow/ice scenarios
 - consistent application to trace gas, cloud, and aerosol retrievals

Loyola et al., AMT, 2020

clim.

NO₂ column density difference [10¹⁵ molec/cm²] (GE LER – climatological OMI LER

2.1

AMF calculation – Cloud Correction

- Latest OCRA/ROCINN v2 cloud parameters
- Clouds-as-Layers (CAL)
 - Clouds are treated as uniform layers of scattering water droplets instead of idealised Lambertian reflectors.
- advantages
 - allows photon penetration
 - · accounts for multiple scattering
 - retrieved cloud height closer to the actual cloud height

R. Lutz (Session 5.1)

AMF calculation – *a priori* NO₂ profiles from regional CTM

Model	TM5-MP	POLYPHEMUS/DLR	LOTOS-EUROS
Spatial resolution	1°× 1°	0.2°×0.3°	0.1°×0.1°
Tropospheric Chemistry	Modified CB05	RACM	Modified CBM-IV
Anthropogenic Emissions	MACCity (Granier et al., 2011)	TNO-MACC (Kuenen et al., 2014)	CAMS European emissions (2018)

Tropospheric NO₂ – *a priori* **NO₂ profiles from TM5-MP**

Tropospheric NO₂ – *a priori* **NO₂ profiles from LOTOS-EUROS**

Tropospheric NO₂ – *a priori* **NO₂ profiles from LOTOS-EUROS**

Validation with MAX-DOAS measurements

- Comparisons with nine stations in Europe
 - mostly (sub)urban polluted conditions
- Cloud free satellite pixels within 20 km radius
- Period: Jan. 2018 June 2020
- Underestimation at urban stations:
 - gradient smoothing effect
 - different sensitivity to NO₂
 - structural uncertainties

SAT-GB [x10¹⁵ molec/cm²]

Conclusions

- \neg Improved NO₂ retrieval algorithm from TROPOMI measurements over Europe
- \neg DOAS retrieval (405-465 nm) with intensity offset correction
- New stratosphere-troposphere separation using DSTREAM method
- → Tropospheric AMF calculation
 - → surface albedo from TROPOMI GE_LER data
 - → cloud correction based on latest OCRA/ROCINN cloud parameters (CAL)
 - → a priori profiles from regional CTM (LOTOS-EUROS and POLYPHEMUS)
- ✓ Validation with ground-based MAX-DOAS measurements
 - \neg Good correlations for nine (sub)urban stations in Europe (R=~0.8)

Liu et al., An improved TROPOMI tropospheric NO₂ research product over Europe, Atmos. Meas. Tech., 2021

