SO, Emission Time-Series During the Onset of the April 2021 Eruption of La Soufrière, St Vincent, Revealed by TROPOMI

Ben Esse¹ | Mike Burton¹ | Catherine Hayer¹ | Rodrigo Contreras-Arratia² | Thomas Christopher^{2,3} | Erouscilla P. Joseph² | Matthew Varnam⁴ | Chris Johnson⁵

¹ Department of Earth and Environmental Sciences, University of Manchester, UK | ² Seismic Research Centre, University of the West-Indies, Trinidad and Tobago | ³ Montserrat Volcano Observatory, Montserrat | ⁴ Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA | ⁵ Department of Mathematics, University of Manchester, UK

Overview

La Soufrière volcano on the island of St. Vincent erupted explosively on 9th April 2021 after months of effusive activity, destroying many homes and other infrastructure, though thankfully with no casualties. This eruption injected vast quantities of SO₂ into the atmosphere which was detected daily by the TROPOspheric Monitoring Instrument (TROPOMI). We analyse this data with PlumeTraj, a back-trajectory analysis toolkit, to produce time- and altitude-resolved fluxes, providing insights into the processes of this eruption.

Email: benjamin.esse@manchester.ac.uk | Twitter: @Volcano_Ben

Results

Gas emission on 8th April was relatively low altitude (3 - 4 km) and low flux (~1 kg·s⁻¹).

Main phase of explosions display much higher flux (up to 5000 kg·s⁻¹) but with a similar injection altitude (~15 km). This suggests the initial explosion cleared previously degassed magma, with this main phase the eruption of the fresh magma in the main phase

Conclusion

- Very little SO₂ was emitted prior to the explosive eruption
- eruption, suggesting this was clearing previously degassed magma
- This analysis can be applied in near-real-time, opening the possibility for monitoring ongoing eruptions in the future

Initial explosion injected SO₂ at ~15 km, with a peak flux of ~300 kg·s⁻¹. Most gas was emitted in a short time-frame.

The initial explosion was sulphur poor compared to the main