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summary Problem setting and retrieval approach

Earth’s climate is a complex perturbed system, in which a wealth of chemical, physical and biological

processes takes place on a wide range of spatial and temporal scales. A particularly important group of 1. Bias in geometrical properties and understanding their uncertainties
atmospheric processes is termed aerosol-cloud interactions (ACI), which describe cloud adjustments to 2. Role of LWC/LWP and droplet effective radius in biases
natural and anthropogenic aerosol particles. Changes in optical and physical properties of clouds are a key 3. How does aerosols influence cloud geometrical extent

factor in both reducing the uncertainty of radiative forcing estimates and in understanding the water cycle.

In this work we present retrieval results of the geometrical extent of clouds based on near-infrared oxygen CTH coT

absorption from SCIAMACHY measurements. The retrieved bottom and top altitude of homogeneous ol * -_‘\' e " /
clouds are sided by data of fine mode aerosol load and microphysical cloud properties generated within 0.5 10 . top
the ESA Climate Change Initiative projects. Global and regional analysis of this parameter’s suite enables § 0.4 Twater,ice
the identification of specific ACI regimes. Moreover, we present a technique to inherently account for 8 3l '
aerosol perturbation of in-cloud extinction profiles based on the synergistic exploitation of oxygen % T}
apsorption and multi-wavelength continuum in the solar spectral range. Preliminary results from c 027
SCIAMACHY and AATSR show that a more realistic description of in-cloud extinction is beneficial for the 0.1 - .
accuracy of the geometrical extent of homogeneous clouds. From a future perspective, this retrieval N LTI || EET R
approach can be deployed with measurements of the upcoming NASA Plankton, Aerosol, Cloud, ocean 760 764 768 760 764 768 “bot
Ecosystem (PACE) mission, scheduled to launch in late 2023. The PACE payload suite comprises the Ocean | | | |
Color Instrument (OCI), a hyperspectral scanning radiometer, and the polarimetric and multi-angular 1. O, A-band at moderate spectral resolution delivers best geometrical properties
sensors HARP-2 and SPEXone. The design and the technical complementarity of the three instrument 2. Multispectral sensors appropriate to derive profile of in-cloud properties
payloads make PACE measurements particularly well-suited for the advancement of our ACI knowledge,
whose scientific level of confidence is still quantified as low by the Intergovernmental Panel on Climate Homogeneous clouds = Inhomogeneous clouds € aerosol influence
Change.
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Aerosol modulation : Zbot which Is Inherently aerosol-modulated
Results
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Uncertainty propagation
New metric incorporating profile of effective radius
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Two contributed multi-angle polarimeters
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PACE will sense from ultraviolet It will also include several
to near-infrared (350-885 nm) shortwave infrared bands
at high resolution. (940, 1038, 1250, 1378, S

1615, 2130, 2260 nm). :
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