

Payload design

• CubeSat platform \rightarrow miniaturised systems

System	Feature	TRL
ASDC	accurate pointing	9
on board computer	commands and data	9
telecommunication	high data rate	9
power supply	50 W	9
mechanical structure	12 U	9
antenna	> 30 dBi, 2 U	3
transmitter	> 30 dBm, 1.5 U	4
receiver	< -100 dBm, 1.5 U	3

design based on commercial-of-the-shelf (COTS) components \rightarrow reduced production costs and times amplificatore

MAR

K

PA

S

I X

SATCROSS Project: Mission Analysis & Payload

Federico Dogo, Luca Severin, Alessio Berto, Mario Fragiacomo, Anna Gregorio **PICOSATS S.R.L.**

The SATCROSS mission aims at measuring two-dimensional water vapour fields on vertical sections of the lower troposphere. This result is achieved observing the attenutation a couple of very close radiofrequency K-band (20 GHz) signals experiences while crossing atmosphere at altitudes below 10 km. Architecture: a train of transmitting (Tx) and receiving (Rx) satellites is placed along the same orbit in such a way their line of sight (LoS) passes tangentially to the Earth troposphere.

LoS

• orbital altitude

 \rightarrow signal power according to link budget, and shielding according to ionizing radiation analysis rule out altitude which is too much above 400 km;

 \rightarrow orbital decay due to atmospheric drag rules out altitude which is too below 400 km;

 \rightarrow 400 km, as the best option, may take advantage of the International Space Station.

simulations for a mid-latitude atmosphere section target

Mission design