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2. Presentation of Artificial Neural Network  & Importance of each Input Parameter 

• Air temperature in the Arctic increases twice the rate of the worldwide mean. This phenomenon is called Arctic Amplification [1]. 
• During polar spring, bromine is released from young sea ice, blowing snow & frost flowers, and through an autocatalytic chemical cycle known as bromine explosion (Fig. 1), depletes 

ozone, changing the oxidizing capacity of the atmosphere. 
• A consistent long-term tropospheric BrO satellite dataset was developed, showing that the spatial patterns of Arctic BrO plumes have been changing over the recent years [3].  
• Our goal is to train an artificial neural network with the long-term BrO dataset  in order to simulate tropospheric BrO, assess the ozone loss and reveal the relationship of tropospheric  

BrO to its sources and driving mechanisms. 

• The inputs of the neural network are sea ice age [5] and meteorological parameters [6], while the output is tropospheric BrO VCD [3].  
2007 achieved the best correlation between measurements and outputs of tropospheric BrO, and is selected as the training dataset. 

Fig. 1: The bromine explosion [2] 

• A novel machine learning approach using an artificial neural network to model tropospheric BrO plumes was developed 
• The simulated tropospheric BrO VCDs show satisfactory agreement (correlation coefficients of 0.5 and errors of 33%) to the observations 
• 2m air temperature and mean sea level pressure are the most important parameters for the development of simulated tropospheric BrO 
• Daily maps where the tropospheric BrO plume is related to the surface parameters can be spatially reproduced 
• Days where the tropospheric BrO plume is potentially forming higher in the troposphere cannot be reproduced 
• The positive trend reported in [3] cannot be reproduced by the neural network 
 Trend may not exclusively be driven by the input parameters selected 
 Potential changes in the relationship of tropospheric BrO to its driving mechanisms 
Potential changes in transport patterns and polar cyclones may affect the performance of the neural network 
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5. References & Acknowledgements  

4. Summary & Conclusions 

• 2m air temperature and mean sea level pressure dominate the performance of the neural network and the formation of enhanced 
 tropospheric BrO plumes. 

Fig. 4: Top: Sensitivity tests to assess the best training dataset. Bottom: Evaluation of the neural 
network trained with data from 2007. Metrics are between measurements and simulations 

• Both successful and unsuccessful daily simulations of bromine explosion cases appear throughout the 22-year dataset. 

Fig. 7: Successful spatial reproduction of the enhanced tropospheric BrO 
plume (01.04.2011). 
 

• Long-term comparison of polar spring (MAM) average maps between observations and simulations of tropospheric BrO show a 
decrease in agreement over the latest years. 
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Fig. 2: A BrO explosion event, as seen by GOME-2A [4] 
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Fig. 9: Arctic MAM map comparisons between observations and simulations 

Fig. 8: Unsuccessful spatial reproduction of the enhanced tropospheric BrO 
plume (08.04.2017). 
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Fig. 3: A schematic of the neural network 

Fig. 5: The impact of each input parameter on the performance 
of the training of the neural network (2007 as training dataset) 

Fig. 6: The effect of each input parameter on the magnitude of simulated tropospheric BrO 
(varying one input parameter and keeping others at the 2007 MAM mean) 
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