

Jniversität Bremen

1. Introduction & Motivation

- Air temperature in the Arctic increases twice the rate of the worldwide mean. This phenomenon is called Arctic Amplification [1]. ozone, changing the oxidizing capacity of the atmosphere.
- **BrO** to its sources and driving mechanisms.

- Potential changes in the relationship of tropospheric BrO to its driving mechanisms
- *Potential changes in transport patterns and polar cyclones may affect the performance of the neural network

An Artificial Neural Network Approach for Simulating Tropospheric BrO over the Arctic (P3.5.2)

Ilias Bougoudis¹, Anne-Marlene Blechschmidt¹, Andreas Richter¹, Sora Seo^{1,2}, John P. Burrows¹ ¹ Institute of Environmental Physics, University of Bremen, Germany (ibougoudis@iup.physik.uni-bremen.de) ² German Aerospace Center (DLR), Oberpfaffenhofen, Germany ATMOS 2021, 22-26 November 2021, Virtual Event

• During polar spring, bromine is released from young sea ice, blowing snow & frost flowers, and through an autocatalytic chemical cycle known as bromine explosion (Fig. 1), depletes

• A consistent long-term tropospheric BrO satellite dataset was developed, showing that the spatial patterns of Arctic BrO plumes have been changing over the recent years [3]. • Our goal is to train an artificial neural network with the long-term BrO dataset in order to simulate tropospheric BrO, assess the ozone loss and reveal the relationship of tropospheric

1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Tropospheric BrO VCDs [10 ¹³ molec/cm ²]	
										6.0 5.5 5.0 4.5 4.0	
										3.5 3.0 2.5 2.0 1.5 1.0	
Fig. 9: Arctic MAM map comparisons between observations and simulations											

3. I. Bougoudis et al: Long-term time series of Arctic tropospheric BrO derived from UV-VIS satellite remote sensing and its relation to first-year sea ice (2020) 4. A.-M. Blechschmidt et al: An exemplary case of a bromine explosion event linked to cyclone development in the Arctic (2016)

We gratefully acknowledge the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Projektnummer 268020496 – TRR 172, within the Transregional Collaborative Research Center "ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)³" and the University of Bremen.

Fig. 8: Unsuccessful spatial reproduction of the enhanced tropospheric BrO