

The SATCROSS Measurement Campaign

Application of the NDSA technique to a Ground-to-Ground Radio Link

<u>Arjan Feta¹</u>, Marco Gai², Francesco Montomoli², Ugo Cortesi², Giovanni Macelloni², Flavio Barbara², Samuele Del Bianco², Luca Facheris¹, Fabrizio Cuccoli³, Fabrizio Argenti¹

¹Dept. of Information Engineering, University of Florence, Italy; ²Institute of Applied Physics (IFAC)-CNR, Italy; ³CNIT - National Inter-University Consortium for Telecommunications, Italy

SUMMARY

The measure of water vapor (WV) in the lowest part of the troposphere is a critical issue. A novel technique, which is based on a microwave radio link and the measure of differential attenuation of two signals transmitted at closely spaced frequencies in the Ku-K band, has been recently proposed. In order to prove the potential of this technique, a low-cost microwave link has been designed and the first measurements are being carried out along a ground-to-ground link. Instrument design and characteristics, as well as experimental results, are presented here.

Proposed measurement configuration

- $f_1 = 18.8 \, {
 m GHz}; f_2 = 19.2 \, {
 m GHz}$
- $\blacktriangleright \Delta f = 400 \text{ MHz}$
- $rac{}{} f_C = 19 \text{ GHz}$

stratospheric baloons

 $\checkmark f_C = 19$ GHz is the optimal frequency for an Earth-satellite link that includes the lowest tropospheric shells. The same concept is applicable to aerial platforms such as HAPS or

nteruniversitario

per le telecomunicazioni

Simulation of IWV vs. S at 19 GHz for a receiver placed on a platform at 10 km altitude. Each point in the scatter plot refers to a spherically symmetric atmosphere generated

TABLE 1: Coefficients of the IWV-S ₁₉ linear regression					
a_1 [s ⁻¹ ·g·cm ⁻²] ·10 ⁻⁹	a _o [g·cm⁻²]	Relative error [%]			
114	0.58	3.0			

2. THE INSTRUMENT

- \succ An instrument prototype able to perform the first NDSA measurements in ground-ground configuration has been designed and realized.
- Montomoli at. al. (2021). Integrated Water Vapor Estimation Through Microwave Propagation Measurements: First Experiment on a Groundto-Ground Radio Link. IEEE Transactions on Geoscience and Remote Sensing. PP. 1-13. 10.1109/TGRS.2021.3067929.
- \succ The first prototype was upgraded with the realization of improved transmitter and receiver units to ensure more accurate measurements of IWV.
- \succ It consists of a synthesized microwave transmitter and a software defined radio microwave receiver operating from 18.2 to 19.2 GHz.
- \blacktriangleright Two tones separated by 400 MHz are transmitted and sampled at the receiver using 2 independent channels of an SDR Transceiver.

- For more robust measurement results, the signal power is calculated from the received samples using two different processing chains working in parallel.
- RMS based power calculation every 12500 samples.
- Peak detection of the received signals' power spectra - every 12500 samples.
- The received signals time resolution is 50 ms in both processing chains.

3. GROUND TO GROUND EXPERIMENT

- > The measurement campaign started in August and is still going on, to test the instrument and the performance of the NDSA technique.
- The receiver has been installed at sea level and the transmitter on the top of a mountain (around 1900 m a.s.l.) thus obtaining a transect in the troposphere of tens of Km.

TX-Antenna	Corrugated Circular Horn	RX-Antenna	Corrugated Circular Horn	Test in anechoic
Antenna Gain	21.6 dBi	Antenna Gain	21.6 dBi	chamber:
Antenna Polarization	Circular	Antenna Polarization	Circular	good PX
Antenna HPBW	15.8°	Antenna HPBW	15.8°	
Tx frequency range	Fixed: 18.2, 19.2 GHz	LNB-band (RF)	18.2-19.2 GHz	stability
Tx frequency resolution	0.001 Hz	LNB-Noise Figure	1.6 dB	-incertitude
Tx output power (Max))	20 dBm	LNB IF	1.55 - 1.95 GHz	$\Delta A < 0.02 \text{ dB}$
TX Output Frequencies	18.8; 19.2 GHz	ADC RF Bandwidth	10MHz-6GHz	

4. PRELIMINARY RESULTS

- **<u>4.1 Power Stability in Transmission</u>**
- The transmission modules provide diagnostic signals for monitoring the stability of the generated signals.
- Power stability of the single tones is of the order of 0.01 dB.

<u>4.2 – Differential Signal Power Stability in Reception</u>

The system in its definitive configuration was tested and calibrated in an anechoic chamber.

4.3 – In-field Power Measurement

(dBm/dB)

The measurement campaign started on the end of July and is currently continuing.

