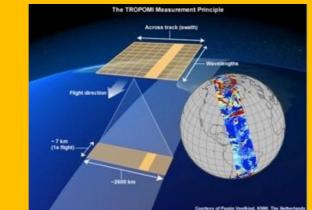
Study of TROPOMI/ALH (Aerosol Layer Height) Product Over Europe Using **EARLINET Data Base and NATALI Software**

ATMOS 2021


Anca Nemuc¹, A. Dandocsi^{1,2}, D. Nicolae¹, Iwona Stachlewska³, V. Nicolae^{1,4}, J. Vasilescu¹, A. Ilie¹, L.Belegante¹, C. Radu¹ 1. National Institute of R&D for Optoelectronics INOE, Atomistilor 409, Magurele, Romania , anca@inoe.ro 2. Directorate of Earth Observation Programmes, European Space Agency (ESA), ESRIN, 00044 Frascati, Italy

3. University of Warsaw, Faculty of Physics, Warsaw, Poland

4. Faculty of Physics, University of Bucharest, Atomistilor 405, Magurele, Romania

Motivation

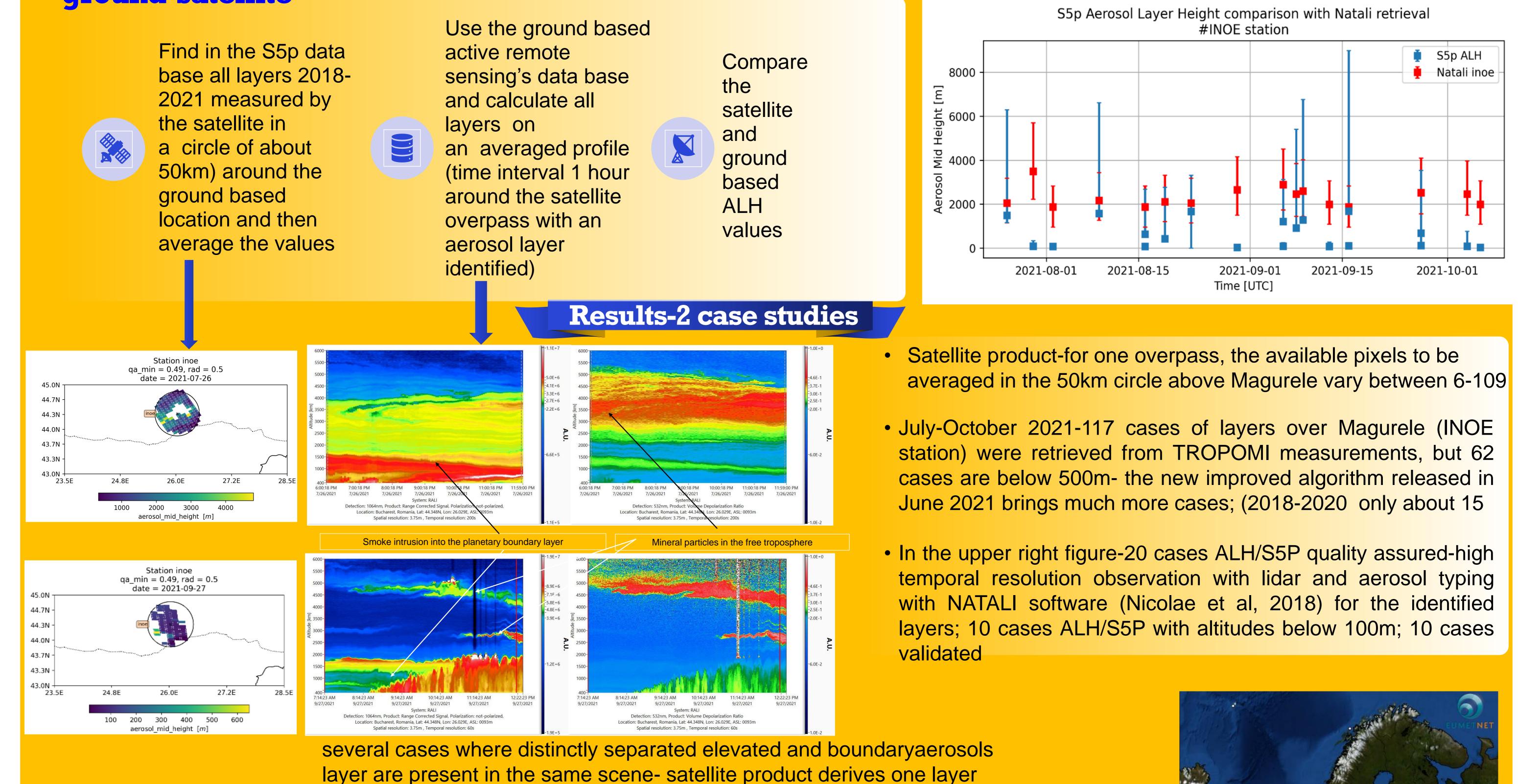
Develop a NRT(Near Real Time) procedure for comparison between Aerosol layer heights derived from satellite passive remote sensing measurements(S5P/TROPOMI) and from ground based active remote sensing measurements

Results

Data used

Satellite S5P/TROPOMI level 2 ATBD – ALH

Ground based measurements


The technique for retrieving aerosol layer height is based on optimal estimation (Rodgers,	The retrieved aerosol layer mid height can be interpreted as an	The target requirement on the	The lidar systems can provide	The NATALI software (Neural Network Aerosol Typing Algorithm Based on Lidar Data) allows retrieving	The input of the NATALI is represented by the EARLINET lidar files in the NetCDF format, containing backscatter	4
2000), where an RTM that calculates the top of atmosphere oxygen A-band spectra is fitted to TROPOMI measured oxygen A-band spectra.(KNMI)	average aerosol height weighted by the extinction coefficient at each height	accuracy and precision of retrieved Aerosol Layer Height is 0.5 km or 50 hPa	information regarding the aerosols content on multiple layers due to their temporal and vertical high resolution.	the most probable aerosol types within a layer from lidar data, as contained in the EARLINET/ACTRIS* database (Nicolae D. et al, 2018).	coefficient profiles (1064nm, 532nm and 355nm), extinction coefficient profiles (532nm and 355nm), and optionally linear particle depolarization ratio profile (LPDR) at 532nm	
The height of such layer (one layer!) is retrieved for daytime cloud-free conditions	The TROPOMI Aerosol Layer Height (ALH) product focuses on retrieval of daytime vertically localized aerosol layers such as desert dust, biomass burning aerosol, or volcanic ash plumes, but the aerosol type is not provided in the satellite file.	ATDB recommendation is to	NATALI software is detecting the layer boundaries with the gradient method (Belegante et al, 2014) using the 1064 nm backscatter coefficient profile	a minimum thickness of 200m) is	Multiwavelength Raman lidar measurements were performed at the Romanian Atmospheric 3D Observatory – RADO, Magurele, Romania, 6 km South of Bucharest	

Procedure for ALH data intercomparison ground-satellite

Use the ground based active remote sensing's data base and calculate all layers on an averaged profile (time interval 1 hour around the satellite

the satellite and ground based

Future plans

Validation study and implementation of a method for comparison of ALH/S5P using Aerosols layers from the ceilometer network 129 ceilometers 2018-2021 part of e-profile:: <u>https://e-profile.eu/#/cm_profile</u>

References

- Nicolae, D et al. : A neural network aerosol-typing algorithm based on lidar data, Atmos. Chem. Phys., 18, 14511–14537, https://doi.org/10.5194/acp-18-14511-2018, 2018
- Belegante, L.; Nicolae, D.; Nemuc, A.; Talianu, C.; Derognat, C. Retrieval of the boundary layer height from active and passive remote sensors. Comparison with a NWP model. Acta Geophys. 2014, 62, 276-289,
- https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-Aerosol-Layer-Height-Product-Readme-File.pdf
- ALH/S5P ATBD https://sentinels.copernicus.eu/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-Aerosol-Height.pdf/3c7910e4-f575-4485-bb1f-a7

Acknowledgements

This work was supported by a grant of the Romanian Ministry of Education and Research, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2019-0340, within PNCDI III, by Romanian National Core Program contract 18N/2019, and by the EU and ESA through the Contract No. 4000132151/20/NL/FF/ab, SVANTE

