

ATMOS 2021

EarthCARE – Final Preparations for the Earth Cloud, Aerosol and Radiation Explorer

Tobias Wehr ESA/ESTEC, Noordwijk, NL 22/11/2021

Linking Clouds, Aerosol and Radiation

Science: Impact of Clouds and Aerosols on Radiation

Observations:

- Cloud profiles (ice, liquid, mixed), cloud coverage, precipitation
- Aerosol profiles
- Broad-band Solar & Thermal Radiation

Satellite and Payload

- Sun-sync. orbit at 393 km, 14:00 hours descending node
- UV Lidar with high spectral resolution receiver
- W-band Cloud Radar with Doppler (contribution JAXA)
- Imager and Broad-Band Radiometer
- Launch 2023

→ ATMOS 2021 - ESA ATMOSPHERIC SCIENCE CONFERENCE

Earth Explorer Mission implemented in

cooperation with JAXA

Cloud Profiling Radar (CPR) - JAXA 94 GHz Doppler, 2.5 m dish (folded in photograph) Level 1: Reflectivity and Doppler profiles

Atmospheric Lidar (ATLID)

High-Spectral Resolution Lidar (HSRL), λ =355nm Two redundant transmit telescopes & 60 cm receive tel. 3 receive channels: molecular, particular, depolarization Level 1: attenuated backscatter profiles

Multi-Spectral Imager (MSI)

pushbroom, 4 solar + 3 TIR channels Level 1: TOA radiances and brightness temperatures

Broad-Band Radiometer (BBR)

2 Channels: Solar + Thermal; 3 fixed FoV Level 2: TOA solar and thermal radiances & fluxes

→ ATMOS 2021 - ESA ATMOSPHERIC SCIENCE CONFERENCE

The Cloud Profiling Radar – CPR

- High power W-band (94GHz), nadir-pointing
- Doppler capability
- Antenna aperture 2.5m
- Variable PRF: 6100-7500 Hz
- Sensitivity at least -35dBZ at 20km height
- Sampling: 500m horizontal, 100m vertical
- Vertical range up to 12, 16 or 20km as function of latitude.
 Lower vertical range → higher PRF → better Doppler
- -3dB beamwidth = 0.09° → effective footprint on ground = 750m x 1000m
- Instrument: 321 W, 270 kg, 265 kbps
- Level 1 product: reflectivity & Doppler profiles

The Atmospheric Lidar – ATLID

- Atmospheric Lidar
 laser wavelength λ = 355nm, lin. pol.
- ➢ High Spectral Resolution Lidar (HSRL) using Fabry-Perot etalon centred on the laser centre wavelength → separates molecular from particle backscatter signals (lidar ratio measured)
- 3 channels receiver :
 - Rayleigh scatter
 - co-polar Mie
 - cross-polar
- Main products are profiles of
 - molecular backscatter signal
 - cloud and aerosol backscatter signal, co-polar
 - cloud and aerosol backscatter signal, cross-polar
 - extinction
- Sampling: along-track 290m (2x integrated), vertical 103m (up to 20km)
- Mass: 558 kg, Power: 585 W, Data rate <660 kb/s

Industry: Airbus (F) + Selex ES (I)

ATLID

Multi-Spectral Imager – MSI

Objective:

To provide contextual imagery information to support the retrievals of geophysical parameters by the active instruments onboard EarthCARE

Characteristics:

150 km swath (-35km to +115 km)500 m ground sampling distance57 W, 60 kg, 652 kbps

Level 1 product: radiances (VNS) & brightness temperatures (TIR)

Industry: SSTL (UK) + TNO (NL)

Signal to noise VIS/NIR 70-500 SWIR 20-250 Noise (NEDT) TIR 0.25-0.80 K

VNS Sun Baffle

SWIR-2 radiator

ΩB

Channel	Centre Wavelength [µm]	Bandwidth (50%) [μm] 0.02 0.02 0.05		
VIS	0.67			
NIR	0.865			
SWIR 1	1.65			
SWIR 2	2.21	0.1		
TIR 1	8.8	0.9		
TIR 2	10.8	0.9		
TIR 3	12.0	0.9		

Broad-Band Radiometer – BBR

Three fixed telescopes: forward (55°), nadir, backward (-55°)

Two channels:

Short-wave (SW) channel 0.25 μm to 4 μm Total-wave (TW) channel 0.25 μm to >50 μm → Long-wave (LW) derived from TW-SW

Abs. accuracy 2.5 (SW) / 1.5 (LW) $Wm^{-2}sr^{-1}$

Spatial resolution nominal 10 km x 10 km

Spatial sampling distance 1 km

48 W, 45 kg, 145 kbps

Products: TOA SW/LW radiances & flux

Industry: TAS (UK) + RAL (UK)

3 fixed, single mirror telescopes, each with a linear microbolometer detector array. Chopper drum rotates continuously, chopping the signal between SW, drum & TW views

Calibration drum periodically rotates into view:

- Hot or cold blackbody, every 88s, to calibrate LW
- View to sun diffuser, every 2 months for 30 orbits, to monitor aging in the SW chain

Radar science products: vertical profiles of (thick) clouds, precip.

Lidar science products: vertical profiles of (thin) cloud & aerosol

Imager science products:across-track scene context,2D cloud & aerosol information

Synergy products:

- Cloud-precip-aerosol vertical profiles
- 3D cloud & aer. scenes (100km²)
- calculated TOA radiances & fluxes
- calculated heating rates

Radiometer science products:

TOA radiances and fluxes

Data volume

Data volume estimate (Total L0 up to L2b) ESA: 60 GB / orbit

JAXA: 11 GB / orbit

Data latency

Nominal (60% of data): Within 5.5 h from sensing Worst case (blind orbits): 24h (up to L2a)/48h (L2b)

(MB per	orbit)	ATLID	CPR	MSI	BBR	TOTAL	Sensing ESA		JAXA
Level 0		621	221	485	103	1,430	L0 generation (2.55 hours)	ESA <> JAXA	
Level 1b		6,000	640	5,500	150	12,290	*	CPR LO	
Level 1c				1,200		1,200	ESA L1b generation		CPR 11h generation
Level 1d (X-JSG and X-MET)						4,900	CPR L1b		
Level 2a	ESA	7,400	3,000	10,800	20	21,220	ESA L1c generation ESA	L1d ESA L1b	
	JAXA	870	3,045	2,010		5,925		ESA L1c	
Level 2b (Radiation)		6,000			6,000		JAXA L2a generation		
Level 2b (Cloud/Aerosol)		11,000			11,000	ESA L2a generation	BBR L2a	(incl. CPR L2a products)	
JAXA Level 2b		3,369			3,369				
Volume Margins	ESA	2,600			2,600	ESA L2b generation JAXA L2a Other ESA L2b generation	JAXA L2b generation		
	JAXA	1,066			1,066	¥	ESA L2b JAXA L2b	¥	
TOTAL DATA VOLUME / ORBIT				71,000	4-		tesh .		
TOTAL DATA VOLUME / ORBIT (ESA \rightarrow JAXA)				60,000	<u>Note:</u> For ESA-JAXA Transfers, • Solid lines = required for processing				
TOTAL DATA VOLUME / ORBIT (JAXA \rightarrow ESA)				11,000	•	Dashed lines = delivery o	only		

ESA data products

will be produced operationally by the ESA ground segment located at ESRIN.

JAXA data products fall in two categories: **Standard Products:** produced and released by JAXA **Mission Operation** System: (1) CPR echo and cloud products; (2) ATLID feature & target mask, aerosol & cloud products, PBL height; (3) MSI cloud products; (4) CPR-ATLID synergistic cloud products; (5) **CPR-ATLID-MSI** synergistic cloud products; (6) Foursensor synergy radiative products. **Research Products:** processed by either JAXA/EORC or cooperating Japanese Laboratories, are single or multi-sensor cloud, aerosol, precipitation, snow and air motion products.

CPR Level 1b (JAXA) Radar reflectivity and Doppler velocity profiles

ATLID Level 1b (ESA) Attenuated backscatter in

- Rayleigh channel
- Co-polar Mie channel
- Cross-polar Mie channel

CPR Level 2a Radar echo product, feature mask, cloud type, liquid and ice cloud properties, vertical motion, rain and snow estimates, ...

ATLID Level 2a Feature mask and target classification, extinction, backscatter & depol. profiles, aerosol properties, ice cloud properties, ... MSI Level 1b/c (ESA) TOA radiances for four solar channels, TOA brightness temperatures for three thermal channels

MSI Level 2a Cloud mask, cloud microphysical parameters, cloud top height, aerosol parameters, ...

Synergistic Level 2b 1. Target classification 2. Cloud & aer. prof. at x-sec

EarthCARE Data Production Model

CPR Level 1b (JAXA) Radar reflectivity and Doppler velocity profiles

ATLID Level 1b (ESA) Attenuated backscatter in

- Rayleigh channel
- Co-polar Mie channel
- Cross-polar Mie channel

40

CPR Level 2a Radar echo product, feature mask, cloud type, liquid and ice cloud properties, vertical motion, rain and snow estimates, ...

ATLID Level 2a Feature mask and target classification, extinction, backscatter & depol. profiles, aerosol properties, ice cloud properties, ...

Synergistic Level 2b1. Target classification2. Cloud & aer. prof. at x-sec

3D Scenes Construction Expand syn. retrievals acrosstrack using MSI; ≈40km wide

Radiative Transfer Products calculated radiances, fluxes, heating rate profiles MSI Level 1b/c (ESA) TOA radiances for four solar channels. TOA brightness

Schematic of construction algorithm

acknowledgements: Environment and Climate Change Canada

CPR Level 1b (JAXA) Radar reflectivity and Doppler velocity profiles

ATLID Level 1b (ESA) Attenuated backscatter in

Rayleigh channel

ATLID Level 2a

- Co-polar Mie channel
- Cross-polar Mie channel

MSI Level 1b/c (ESA) TOA radiances for four solar channels, TOA brightness temperatures for three thermal channels

MSI Level 2a Cloud mask, cloud microphysical parameters, cloud top height, aerosol parameters, ... **BBR Level 1b** (ESA) Filtered TOA short-wave and total-wave radiances

BBR Level 2a Unfiltered top-of-atmosphere radiances, short-wave and long-wave fluxes **BBR Level 2b:** enhanced products using MSI

Synergistic Level 2b 1. Target classification 2. Cloud & aer. prof. at x-sec

3D Scenes Construction Expand syn. retrievals acrosstrack using MSI; ≈40km wide

Radiative Transfer Products calculated radiances, fluxes, heating rate profiles EarthCARE Data Production Model

Assessment Comparison of calculated fluxes and radiances to BBR observations

CPR Level 2a Radar echo product, feature mask, cloud type, liquid and ice cloud properties, vertical motion, rain and snow estimates, ...

ture
and
ticalFeature mask and target
classification, extinction,
backscatter & depol. profiles,
aerosol properties, ice cloud
properties, ...

Retrievals and "Closure" Example of work in progress

Reconstructed cloud scene based on radar-only + lidaronly + imager-only cloud retrievals ("Composite" product) FLUX IN BLUE

Synergistically retrieved cloud scene, CAPTIVATE algorithm (Opt. Estimation with complex state vector) FLUX IN YELLOW

Model truth (Canadian Weather Model GEM) FLUX IN RED

SOLAR FLUX

→ "Composite" clouds are too dull and too cold

→ ATMOS 2021 - ESA ATMOSPHERIC SCIENCE CONFERENCE

Acknowledgement R. Hogan, S. Mason, H. Barker, Y. Cole, Z. Qu, D. Donovan

Assimilation of EarthCARE cloud radar and lidar

Preparation for data monitoring and assimilation into operational model progressing at ECMWF

- 1. Monitoring of data quality in near real-time against the operational model
- 2. Model-to-observation evaluation of cloud and precipitation and subsequent model development
- 3. Potential for improving the model analysis leading to direct improvements of forecast skill demonstrated
- 4. Radar reflectivity, Lidar backscatter. <u>New</u> work towards utilisation of radar Doppler velocity, Lidar Mie channel extinction and Rayleigh channel attenuated backscatter (monitoring)

Expected data coverage for one month

courtesy **CECMWF**

17

EarthCARE Validation

- 2017 Announcement of Opportunity for EarthCARE validation
 → Validation Portal <u>https://earthcare-val.esa.int/</u>
- Joint ESA-JAXA Validation Implementation Plan
- EarthCARE Validation Workshops (2018, 2021, 2023)
- Preparations are currently ramping up (confirm/identify funding...)
- Campaigns: recent highlight "Joint Aeolus Tropical Atlantic Campaign" JATAC in Cape Verde (Sept. 2021)
 → LATMOS Falcon Flights: radar & lidar, in-situ, radiometry

→ ATMOS 2021 - ESA ATMOSPHERIC SCIENCE CONFERENCE

JATAC / CADDIWA images & quick looks courtesy LATMOS

Acknowledgments

The EarthCARE Joint Mission Advisory Group

Co-chairs: A.J. Illingworth, H. Okamoto

Members: L. Baldini, A. Battaglia, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, D. Donovan, J. Fischer, S. Groß, R. Hogan, T.Y. Nakajima, T. Nishizawa, Y. Ohno, M. Satoh, K. Suzuki, N. Takahashi, U. Wandinger

Observers: S. Kato, G. Stephens, B. Stevens, D. Vane, D. Winker

A. J. Illingworth *et al.* The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation

http://journals.ametsoc. org/doi/pdf/10.1175/BA MS-D-12-00227.1 Meet us at the Living Planet Symposium, May 2022 Two EarthCARE Sessions!

Level 2 Team

ATLID retrievals

G.-J. van Zadelhoff, D. Donovan(KNMI, Netherlands)

CPR products

P. Kollias, B. Puigdomenech (McGill University, Canada); A. Battaglia (University of Torino, Italy)

MSI retrievals

A. Hünerbein, S. Bley (TROPOS, Germany); N. Docter, R. Preusker, J. Fischer (Free University of Berlin, Germany)

- BBR radiances and estimated fluxes
 - N. Clerbaux, A. Velazquez, E. Baudrez (Royal Meteorological Institute Belgium); Carlos Domenech, R. Garcia Maranon (GMV Madrid), J. Fischer (Free University of Berlin, Germany)
- > Synergistic ATLID & MSI retrievals
 - U. Wandinger, A. Hünerbein, M. Haarig (TROPOS, Germany)
- Synergistic CPR & ATLID & MSI retrievals
 - R. Hogan, S. Mason (ECMWF, UK); J. Delanoë, A. Irbah (LATMOS, France)
- > Radiation products (from retrievals) & closure

H. Barker, J. Cole, M. Shephard, Z. Qu (Environment and Climate Change Canada); N. Villefranque (LMD/IPSL, France)

ECMWF Assimilation *M. Janiskova, M. Fielding*