Tropospheric bromine monoxide time-series from GOME-2 and a possible extension using TROPOM

Sora Seo¹, Klaus-Peter Heue^{1,2}, Nicolas Theys³, Alexis Merlaut³, Francois Hendrick³, Andreas Richter⁴, William Simpson⁵, Udo Frieß⁶, Pieter Valks¹, Diego Loyola¹

¹ Deutsches Zentrum für Luft- und Raumfahrt (DLR), IMF, Oberpfaffenhofen, Germany

³ Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium

⁵ Department of Chemistry and the Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA

⁶ Institute of Environmental Physics, University of Heidelberg, Heidelberg, Germany

1. Introduction

- Bromine monoxide (BrO) is one of the most dominantly observed indicators of reactive bromine species in the ozone catalytic loss process
- BrO can be measured by space-borne remote sensing platforms
- We generated a tropospheric BrO column dataset covering a period of 14 years using GOME-2 measurements with the framework of the AC-SAF project
- The present algorithm is planned to be applied to TROPOMI measurement which has a finer spatial resolution and a high signal to noise

3. GOME-2 tropospheric BrO vertical column

⁴ Institute of Environmental Physics, University of Bremen, Bremen, Germany

² Technische Universität München (TUM), Munich, Germany

2. Satellite tropospheric BrO column retrieval

(1) DOAS BrO slant column retrieval

- **Fitting window**: 332 359 nm
- Solar reference
- **Absorption cross sections**: BrO (223 K), O₃ (223 K and 243 K), NO₂ (220 K), HCHO (298 K), OCIO (293 K), 2 pseudo-cross sections for O₃ at 223 K, Ring
- Polynomial: 5th order
- Two additional polarization functions (Eta and Zeta from GOME-2 calibration key data) are included in the fit
- Linear offset correction

(2) Stratospheric correction

- Stratospheric BrO profiles are estimated using a stratospheric BrO climatology which is based on the output of the chemical transport model BASCOE
- Stratospheric vertical column derived from the Theys et al. (2009) method via BrO/Br_v ratio, O₃ and NO₂ columns form GOME-2 measurements
- (3) Tropospheric air mass factor and vertical column computation

 $V_t = \frac{S - M_s V_s}{M_t}$

 V_s : stratospheric BrO vertical column V_t : tropospheric BrO vertical column M_s: stratospheric air mass factor M_t: tropospheric air mass factor

The altitude-dependent air mass factors (AMF) are calculated with the LIDORT Viewing geometry, surface albedo (GOME-based monthly minimum GLER; Tilstra et al., 2017), surface pressure, clouds, a priori BrO profile • For high albedo, a constant distribution in the first km above the surface For low albedo, a Gaussian profile with a maximum at 6 km and FWHM of 2 km

> **Figure 1.** Monthly average of tropospheric BrO vertical columns from GOME-2 measurements for the Northern Hemisphere (upper plots) and the Southern Hemisphere (lower plots). Only data corresponding to solar zenith angles lower than 85° are used.

2020-04-01 orbit #39109 2020-04-01 orbit #12783 BrO contour plot. Ny_Alesund (01.04.2020) - VAA: 328.00 12.0 ັວ 11.0 ໘ Figure 2. Tropospheric BrO vertical 10.0 c columns retrieved from GOME-2B (left) and TROPOMI (middle) measurements on 1 and 2 April 2020. BrO concentration profiles from MAX-) 10 -DOAS measurements at the NDACC 1.5 station in Ny-Ålesund (right). 2.0 1.0 1.0 0.5 0.0 Here, TROPOMI tropospheric BrO 16:00 18:00 vertical columns are beta version 06:00 08:00 10:00 12:00 14:00 04:00 time (UTC) results based on Seo et al., 2019. BrO contour plot. Ny_Alesund (02.04.2020) - VAA: 328.00 2020-04-02 orbit #39123 2020-04-02 orbit #12797 GOME-2 and TROPOMI show similar spatial distributions of tropospheric l1.0 ບູ BrO columns in spite of the 10.0 c 03:51 UTC 06:07 UTC differences in instrument resolution 09:11 UTC 12:05 UTC and overpass times.

3.0

2.0

4. Comparison to TROPOMI and MAX-DOAS observations

5. Conclusions and Outlook

- We have developed an algorithm for the retrieval of tropospheric BrO columns from GOME-2 instruments on Metop-A/B as part of the AC-SAF.
- This algorithm has been used to generate long-term tropospheric BrO records from GOME-2 measurements.
- The spatial distributions of tropospheric BrO columns show a good consistency between GOME-2 and TROPOMI measurements despite the difference in spatial resolution and overpassing time.
- This algorithm is planned to be applied to TROPOMI measurements for the tropospheric BrO column retrieval, which makes it possible to extend the time series and monitor the spatial variations with a high spatial resolution

Small scale variations of tropospheric BrO can be observed by TROPOMI with a high spatial resolution (3.5x5.5 km).

6. Selected references and Acknowledgements

- Theys, N., Van Roozendael, M., Hendrick, F., Yang, X., De Smedt, I., Richter, A., Begoin, M., Errera, Q., Johnston, P. V., Kreher, K., and De Mazière, M.: Global observations of tropospheric BrO columns using GOME-2 satellite data, Atmos. Chem. Phys., 11, 1791–1811, 2011
- Seo, S., Richter, A., Blechschmidt, A.-M., Bougoudis, I., and Burrows, J. P.: First high-resolution BrO column retrievals from TROPOMI, Atmos. Meas. Tech., 12, 2913–2932, 2019

