

ENHANCING AND DETECTING CO₂ PLUMES IN SATELLITE IMAGES USING COMPUTER VISION DENOISING, INPAINTING, AND RIDGE TRACING

Erik Koene, Gerrit Kuhlmann, Dominik Brunner

Empa, Dübendorf, Switzerland 24/11/2021

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958927.

Discussion & summary

Background

Copernicus Carbon Dioxide Monitoring (CO2M) satellite constellation

- To be launched in 2025
- 2×2 km² resolution
- Measures CO₂ [$\sigma_{VEG50} \approx 0.7$ ppm] and NO₂ [$\sigma_{ref} \approx 10^{15}$ molecules/cm²] images

Purpose of this study

- Evaluate potential of established computer-vision techniques on satellite images
- Focus on **detecting plumes in future CO2M satellite images** Used input data:
- Synthetic data generated in SMARTCARB project [Kuhlmann et al., 2021]

Denoising – example 1: hard thresholding

Denoising – example 2: Wiener filtering

Denoising – BM3D

[Dabov et al. (2007)]

BM3D applied to satellite data

ATMOS 2021, November 24

BM3D applied to satellite data

Enhancing and Detecting CO2 Plumes in Satellite Images Using Computer Vision.

ATMOS 2021, November 24

Inpainting is like a jigsaw puzzle without pieces

We complete jigsaw puzzles by trying to match patches that fit well with the surrounding data.

We perform inpainting in a similar way, but teach a computer to <u>generate</u> the missing jigsaw pieces, such that: 1. The filled patches look structurally similar to rest of image 2. The filled patches connect well to the rest of the image 3. The filled images looks 'plausible'

Inpainting with a neural network

Example application on satellite data

Image masked by cloud cover

Inpainted image

Ground truth

The inpainted images appear realistic, and correctly *connect* plumes that were disjoint by cloud cover

Note: at this stage, we do <u>not</u> recommend to use inpainted data for emissions estimations, just as a way to connect disjoint plume patches.

Wind field

(addition of wind field reduces average L₁ error by 55%)

Example application on satellite data

Image masked by cloud cover

Inpainted image

Ground truth

The inpainted images appear realistic, and correctly *connect* plumes that were disjoint by cloud cover

Note: at this stage, we do <u>not</u> recommend to use inpainted data for emissions estimations, just as a way to connect disjoint plume patches.

Wind field

(addition of wind field reduces average L₁ error by 55%)

Neurite detection

Varying background strengths (due to stitched microscope images), varying contrast, in presence of noise

[Meijering et al. (2004)]

Plume detection

Plume detection

Empa

Plume detection

Discussion & Conclusion

- The methods thus far were only applied or trained on SMARTCARB data, but as of yet untested on real satellite images
- Meijering method not well-suited for broad point-sources (such as city of Berlin), and detection of the late tail of plumes is only of limited value as emissions are more dispersed at that stage
- Many further uncertainties remain to not just detect but also quantify plume emissions
- BM3D shows a great potential for improving image quality by considering joint XCO₂ and NO₂ images
- Image inpainting can connect disjoint plume pixels due to cloud cover remarkably well. NB: we recommend to use this for small cloud clover fractions only, as the data quality will be bad for large cloud cover fractions.
- Meijering method can detect narrow plume features for long distances

References

- Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image denoising by sparse 3-D transformdomain collaborative filtering. *IEEE Transactions on image processing*, *16*(8), 2080-2095.
- Kuhlmann, G., Broquet, G., Marshall, J., Clément, V., Löscher, A., Meijer, Y., & Brunner, D. (2019). Detectability of CO₂ emission plumes of cities and power plants with the Copernicus Anthropogenic CO₂ Monitoring (CO2M) missions. *Atmospheric Measurement Techniques*, 6695-6719.
- Kuhlmann, G., Henne, S., Meijer, Y. & Brunner, D. (2021) Quantifying CO₂ Emissions of Power Plants With CO₂ and NO₂ Imaging Satellites. Front. Remote Sens. 2:689838. doi: 10.3389/frsen.2021.689838
- Meijering, E., Jacob, M., Sarria, J. C., Steiner, P., Hirling, H., & Unser, M. (2004). Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. *Cytometry Part A: the journal of the International Society for Analytical Cytology*, *58*(2), 167-176.
- Zeng, Y., Lin, Z., Lu, H., & Patel, V. M. (2021). CR-Fill: Generative Image Inpainting With Auxiliary Contextual Reconstruction. In *Proceedings of the IEEE/CVF International Conference on Computer Vision* (pp. 14164-14173).