

ATMOS 2021 Quantifying Localized Carbon Dioxide Emissions from Space: The CO2Image Demonstrator

UNIVERSITÄ HEIDELBERG ZUKUNFT SEIT 1386

Caltech 3 now at EUMETSAT 4 now at Harvard JULIA MARSHALL¹, KLAUS-DIRK GOTTSCHALDT¹, BASTIAN KERN¹, ANDREAS BAUMGARTNER¹, DIETRICH G. FEIST¹, PATRICK JÖCKEL¹, GÜNTER LICHTENBERG¹, CARSTEN PAPROTH¹, LEON SCHEIDWEILER², ILSE SEBASTIAN¹, SANDER SLIJKHUIS¹, JOHAN STRANDGREN^{1,3}, JONAS SIMON WILZEWSKI^{1,4}, CHRISTIAN FRANKENBERG⁵, DAVID KRUTZ¹, ANDRÉ BUTZ², ANKE ROIGER¹

- Point source detection and estimation have been identified as key elements for a monitoring and verification support capacity targeting CO₂ emissions (CO₂ Red Report, <u>Pinty et al., 2017</u>)
- Global survey missions (e.g. OCO-2, CO2M) with ground pixel resolution on the scale of 2 km x 2 km can resolve point-source emissions of roughly > 10 MtCO₂/year
- Increasing the spatial resolution of the ground pixel (to 50 m x 50 m) increases the sensitivity substantially, to > 1 MtCO₂/year

Emission rate / MtCO₂ yr⁻¹

Hestia emissions inventory from <u>Gurney et al., 2018</u>, disaggregated to 50 m x 50 m

from Strandgren et al., AMT, 2020

- Point source detection and estimation have been identified as key elements for a monitoring and verification support capacity targeting CO₂ emissions (CO₂ Red Report, <u>Pinty et al., 2017</u>)
- Global survey missions (e.g. OCO-2, CO2M) with ground pixel resolution on the scale of 2 km x 2 km can resolve point-source emissions of roughly > 10 MtCO₂/year
- Increasing the spatial resolution of the ground pixel (to 50 m x 50 m) increases the sensitivity substantially, to > 1 MtCO₂/year

from Strandgren et al., AMT, 2020

- Point source detection and estimation have been identified as key elements for a monitoring and verification support capacity targeting CO₂ emissions (CO₂ Red Report, <u>Pinty et al., 2017</u>)
- Global survey missions (e.g. OCO-2, CO2M) with ground pixel resolution on the scale of 2 km x 2 km can resolve point-source emissions of roughly > 10 MtCO₂/year
- Increasing the spatial resolution of the ground pixel (to 50 m x 50 m) increases the sensitivity substantially, to > 1 MtCO₂/year

- A higher sensitivity (down to 1 MtCO₂/year) means that a higher proportion of point sources would be quantifiable based on remote sensing measurements:
 - A sensitivity threshold of > 10 MtCO₂/year could resolve 24% of emissions from coal-fired powerplants worldwide
 - A sensitivity threshold of > 1 MtCO₂/year could resolve 88% of emission from coal-fired powerplants worldwide

from Strandgren et al., AMT, 2020

Benefits of fine (< 50 m) ground resolution:

- Enhanced concentration contrast
- Plume sampling by multiple ground pixels (plume detection via NO₂ is not required)
- Plume shape analysis for constraining turbulent dispersion

Drawbacks:

- Dense coverage on larger scales is not possible
- Operation restricted to "target mode", focusing on a few 50 km x 50 km scenes per orbit

Thus: conceived of as a "magnifying glass" to complement measurements from CO2M, and other survey missions.

- Orbit altitude: 575 km
 - ightarrow Inclination = 97.6618°
 - \rightarrow Orbital period T = 1.60033 h \bullet
 - \rightarrow Orbits per day = 14.9969
 - \rightarrow Velocity = 7.57304 km/s

- Agility = ± 25° - along track
 - across track
- Integration time = 89 ms
- ≈ 5 targets per branch between 60°S & 60°N
 → time for repositioning

CO2Image: instrument description

Fine ground-pixel resolution (<50 m) and target mode require...

...a large telescope, fast optics, and forward motion compensation.

Orbit	600 km, sun-synchronous
Mass	90 kg
Swath	50 km
Spatial resolution	$50 \times 50 \mathrm{m}^2$
Spectral range	1559–1672 or 1982–2092 nm
FWHM (2.5 pix)	1.37 or 1.29 nm
Resolving power	1200 or 1600 (-)
Aperture diameter	15.0 cm
f number (f_{num})	2.4 (-)
Optical efficiency (η)	0.48 (-)
Integration time (t_{int})	70 ms
Detector pixel area (A_{det})	900 μm ²
Quantum efficiency (Q_e)	$0.8 \mathrm{e}^{-}\mathrm{photon}^{-1}$
Dark current (I_{dc})	$1.6 \mathrm{fA} \mathrm{pix}^{-1} \mathrm{s}^{-1}$
Readout noise	100 e ⁻
Quantization noise	40 e ⁻

...collecting sufficient photons and CO₂ absorption signal in the spectral domain, i.e. coarser but not too coarse spectral resolution:

- Preference to SWIR-2 (2 micron) over SWIR-1 (1.6 micron): SWIR-1 too noisy due to smaller CO₂ absorption optical depth (even when accounting for typically higher albedo).
- "Optimal" resolving power ~1500 (1-1.5 nm at 2 micron). Smaller resolving power implies (unresolvable) correlations with surface spectral reflectance.

Retrieval error as a function of spectral resolution, derived from degradation of GOSAT spectra

Wilzewski et al., AMT, 2020

To have a "good" image of an easy-to-interpret plume, we need:

- 1. A cloud-free scene
- 2. A strong enough emission source
- 3. Enough wind but not too much...
- 4. A detectable signal
- 5. A good knowledge of the wind speed (and direction)
- 6. A plume advected over land
- 7. Enough light

Can we optimize any of these factors through our choice of overpass time?

CO2Image: optimizing cloud cover

Cloud cover data from EPIC on DISCOVR:

- EPIC: Earth Polychromatic Imaging Camera at L1 point
- Provides images of the sunlit half of the earth
- Data every 1-2 hours: less frequent than geostationary, but globally consistent
- Assessment of cloud fraction for local overpass times from 8:00-16:00
- 8-km resolution at nadir
- Analysis at 0.1° resolution using data from 2018

CO2Image: optimizing cloud cover

EDGAR > 1 MtCO₂/year + landmask

- EPIC: Earth Polychromatic Imaging Camera at L1 point
- Provides images of the sunlit half of the earth
- Data every 1-2 hours: less frequent than geostationary, but globally consistent
- Assessment of cloud fraction for local overpass times from 8:00-16:00
- 8-km resolution at nadir
- Analysis at 0.1° resolution using data from 2018

→ ATMOS 2021 - ESA ATMOSPHERIC SCIENCE CONFERENCE

Morning overpasses have more cloud-free scenes over land targets.

CO2Image: optimizing detectable signal

- 50-m ground resolution with ICON-LES simulations
- Emissions from Hestia (K. Gurney)
- No cloud filtering
- Plume-detecting mask shown over 24 hours, for one day in July

CO2Image: optimizing detectable signal

- 50-m ground resolution with ICON-LES simulations
- Emissions from Hestia (K. Gurney)
- No cloud filtering
- Summing pixels with concentrations above the 1 ppm or 2 ppm over three days of simulation

CO2Image: optimizing detectable signal

- A strong diurnal variability is found
- Plumes are more easily detected in the morning – for this three-day simulation

 Developing turbulence and deepening PBL over the day disperses the plumes

Earlier overpasses result in more detectable pixels under turbulent conditions.

CO2Image: optimizing winds

- Based on ERA5 10-m wind speed for 2019, applying empirical multiplicative factor of 1.4 for effective wind speed U_{eff} (based on Varon et al., 2018; Reuter et al., 2019)
- Analysis restricted to land regions with emissions > 1 MtCO₂/year in 0.1° EDGAR pixel
- Wind speed should be greater than 2 m/s:

→ ATMOS 2021 - ESA ATMOSPHERIC SCIENCE CONFERENCE

Caltech

- Lower wind speeds good for detection but bad for source quantification
- Too high wind speeds lead to lower in-plume enhancements

More overpasses with too-low wind speeds before noon, work ongoing to assess wind uncertainty vs. time of day...

EDGAR > 1 MtCO2/year + landmask

CO2Image: optimizing retrievals

esa

- Earlier overpasses result in larger SZAs...
- OCO-3 snapshot scenes provide some "real-world" idea of the net effect, given variable local overpass time
- Cloud cover is rolled into this
- Measurement geometry is also relevant

Percentage of "good" SAM retrievals as a function of local time

OCO-3 retrievals in snapshot area mode (SAM) show maximum yield for very low VZA (0°-5°) and moderate SZA (45°-50°).

Number of good OCO-3 SAM soundings as a function of local time

CO2Image: optimizing overpass time

- Clear benefits of morning overpass time (like S5!)
- More (and longer) LES plume simulations needed for generalization, and impact on emission estimation
- Temporal variability of emissions found to be of little import, given the focus on CO₂ point sources
- Must consider the loss in coverage for the whole mission, combined with the optimal measurements of individual plumes

Unmeasurable with 12:00 overpass, given SZA cutoff of 70° 60 Unmeasurable with 20 latitude 9:30 overpass, given SZA cutoff of 70° -20 -40 -60 -80 50 100 250 300 350 150 200 day of year

CO2Image: next steps

- Mission is funded, and has entered Phase B
- End-to-end simulator under development
- Developing and applying novel plume detection and quantification methods – currently looking for a PhD candidate for this project!
- Launch planned for 2026: complementary to the timeline of CO2M

