Sentinel-4 Geophysical Products for Air Quality and Climate Monitoring

Wissen für Morgen

Diego Loyola, German Aerospace Center (DLR) S4-Teams from ESA L2OP and EUMETSAT AC-SAF

ESA ATMOS Conference Virtual, 22nd November 2022

Sentinel-4 Geophysical (Level-2) Operational Products

– S4 L2 Copernicus Products

- Development phase: ESA project with DLR as prime
- Operational phase: EUMETSAT

- S4 L2 EUMETSAT AC-SAF Products

- Development phase: DLR
- Operational phase: DLR

Sentinel-4 – Geophysical (Level-2) Copernicus Products

		COPERNICUS Applications			
Species	Parameter	Air quality	Climate	Surface level UV radiation	Others
O ₃	Total column	×			
	Tropospheric column				
NO ₂	Total column	×			
	Tropospheric column				
SO ₂	Total column	×			Volcanic eruptions
нсно 🍤	Total column	×			
сносно 🤹	Total column	×			
Cloud	Cloud fraction		×	×	Used as input for other S4
	Optical depth				products retrieved from S4
	Cloud height				and regridded from FCI
Aerosol	Index	×			Used as input for other S4
	Optical depth				products
	Layer Height				Volcanic eruptions
Surface reflectance	BRDF and white sky albedo			×	Used as input for other S4 products

Sentinel-4 L2OP ESA/Copernicus Project

Sentinel-4 Copernicus – Total Ozone (O₃)

– Heritage

- GOME/SCIA/GOME-2: DOAS with iterative AMF/VCD (Van Roozendael et al., JGR 2006;
 - Loyola et al., JGR 2011; Hao et al., AMT 2014)

- TROPOMI:

- OCRA/ROCINN Cloud as Layer (CAL)
 Loyola et al., AMT 2018
 - No need of ghost-column and intra-cloud corrections
- Retrieval of surface properties GE_LER
 Loyola et al., AMT 2020
- S4 algorithm
 - AMF computed using S4 BRDF and the S4 OCRA/ROCINN CAL

ozone_vertical_column 01:45 DLR GEMS O₂ ozone_vertical_column (DU) 200.0 250.0 300.0 350.0 400.0 450.0 500.0 550.0

Courtesy K-P. Heue (DLR)

Sentinel-4 Copernicus – Tropospheric Ozone (O₃)

- Heritage: ozone profile algorithm developed for GOME
 - Specific emphasis on tropospheric ozone by exploiting the temperature dependence of the Huggins bands
- ESA CCI-ozone selected this scheme to provide full record from GOME-1, SCIAMACHY, GOME-2 and OMI
- S4 has no measurements of Hartley band below 305nm, which provides stratospheric profile information in all previous missions

Sentinel-4 Copernicus – Tropospheric Nitrogen Dioxide NO₂)

- Heritage: Standard DOAS retrieval from GOME, SCIAMACHY, GOME-2, OMI and TROPOMI
 - Stratospheric correction to determine tropospheric slant columns
 - Application of AMFs to determine tropospheric vertical columns
- S4 algorithm
 - Stratospheric fields from CAMS based on assimilation of S₅(P) and S₄ data
 - BRF effects included in AMFs based on S4 BRF product
 - A priori NO₂ profiles from high-resolution regional CAMS forecast

Courtesy A. Richter (IUP-B)

Sentinel-4 Copernicus – Sulfur Dioxide (SO₂)

Heritage: DOAS with one baseline fitting windows plus two alternative windows for high SO₂, similar to the operational algorithm for S₅P

- S4 algorithm
 - Background offset correction

Screening of volcanic plumes and heavy pollution

– Conversion to VCD by means of an AMF dependent on other S4 L2 products: BRF, clouds and aerosol index

Sentinel-4 Copernicus – Formaldehyde (HCHO)

- Heritage: Two-window DOAS ([BrO] and [HCHO]), similar to the algorithm for S₅P
- S4 algorithm
 - Background offset correction
 - Conversion to VCD by means of an AMF dependent on other S4 L2 products: BRF, clouds and aerosol index
 - Ocean region does not suffice for background correction

ATMOS P3.5.1, van Gent et al.

Sentinel-4 Copernicus – Aerosol Layer Height (ALH) and Aerosol Index (AI)

– Heritage:

- ALH algorithm from S5P using information from the O2 A-Band
- AI algorithm from TOMS using two different pairs

Aerosol Index

-6.0

Sentinel-4 Copernicus – Clouds

 Heritage: OCRA/ROCINN algorithms used operationally for GOME, GOME-2, and S5P

OCRA (UV)Cloud fraction

- ROCINN (NIR)

- CAL

- Cloud optical thicknes
- Cloud top height

- CRB

- Cloud albedo
- Cloud height

ATMOS 5.1.1, Lutz et al.

Sentinel-4 Copernicus – Surface and AOD

- Heritage: GRASP

- Multi-day retrieval approach, each day with multihours measurements
 - More stable and accurate surface reflection retrieval
- S4 algorithm
 - Retrieved products for cloud free conditions:
 - Surface BRDF (BRF, DHR, White Sky Albedo)

- AOD

- Daily Gapless Surface Reflectance
 - Surface **BRDF** for different wavelengths
 - 342, 367, 410, 443, 490, 755 nm

Sentinel-4 Copernicus – Geophysical Reference Data

10 20

40

Sentinel-4 Copernicus – Geophysical Reference Data (2)

- 2*5 days (summer + winter)
 with 3x3 pixel boxes
- fully cloudy, partially cloudy, aerosol and SO₂ scenarios
- 17 locations across FOV
- Clouds with
 - CTH= 2, 4, 8 km
 - COT= 5, 20
 - CF= varying

Sentinel-4 Geophysical Algorithm Verification Report 2

Document ID	: \$4-L2-MPIC-GAVR-3003
Authors	: Thomas Wagner, Janis Pukite
Issue	: 2.3
Date	: 2020-08-24
Status	: Draft
Class	: Unclassified – Project Internal

© Restriction of Disclosure: Project internal document, disclosure prohibited.

Sentinel-4 L2 Operational Processors (L2OP)

- The L2OP suite comprises 18 processors
 - Complex interdependencies and processing time constraints
- L2OP mock-up successfully integrated into the EUMETSAT L2PF ground-segment
- L2OP version 1 under development
 - 12 processors already delivered
 - 6 processors planned for early 2022
- L2OP version 2 to be ready before launch
 - Including the latest algorithm improvements
 - Possible updates due to S4 on-ground calibration

Sentinel-4 L2OP Interactions with ECMWF, CAMS, FCI, and Sentinel-5P/-5

Sentinel-4 Geophysical (Level-2) Operational Products

– S4 L2 Copernicus Products

- Development phase: ESA project with DLR as prime
- Operational phase: EUMETSAT

- S4 L2 EUMETSAT AC-SAF Products

- Development phase: DLR
- Operational phase: DLR

EUMETSAT AC-SAF

- MetOp series extended the GOME/ERS-2 and SCIAMACHY data record
 - 26 years of UVN ozone, water vapour and other trace gases
- DLR provides a large number of operational GOME-2 products from MetOp-A, MetOp-B, and MetOp-C
- AC-SAF products generated by DLR are used by Copernicus CAMS
- DLR will provide AC-SAF Sentinel-4 and Sentinel-5 products
 - Total Column Water Vapor (TCWV)
 - SO2 Layer Height

TCWV Blue Band – GOME-2/MetOp

- DOAS fitting in the blue band
- Iterative AMF/VCD calculation
 - WV profile climatology classified as function of TCWV based on 11 years of ERA-Interim

AERONET TCWV (kg/m²)

AERONET TCWV (kg/m²)

Chan K. L., Valks P., Slijkhuis S., Köhler C., Loyola D., Retrieval of total column water vapor from GOME-2 visible blue spectra, AMT 2020

TCWV Blue Band – TROPOMI/Sentinel-5P PAL

SO₂ Layer Height

– FP_ILM (Full-Physics Inverse Learning Machine)

- PCA + Neural Network retrieval
- Extremely fast and accurate SO₂ LH
- Processing speed: ~3ms / pixel
- Accuracy: <2km (SO₂ VCD > 20 DU)

– Applied to:

- GOME-2/MetOp
 - Efremenko et al. 2017
- TROPOMI/S5p
 - Hedelt et al. 2019
- OMI/AURA
 - Fedkin et al. 2020

Cumbre Vieja & Etna 2021

SO₂ Layer Height – TROPOMI/Sentinel-5P

– Retrieval further optimized in ESA S₅P+I: SO₂LH, data being assimilated in CAMS

A. Inness, M. Ades, D. Balis, D. Efremenko, J. Flemming, P. Hedelt, ME. Koukouli, D. Loyola, R. Ribas, The CAMS volcanic forecasting system utilizing near-real time data assimilation of S5P/TROPOMI SO2 retrievals, GMD 2021 ME. Koukouli, K. Michailidis, P. Hedelt, IA. Taylor, A. Inness, L. Clarisse, D. Balis, D. Efremenko, D. Loyola, RG. Grainger, C. Retscher, Volcanic SO₂ Layer Height by TROPOMI/SentineI-5P: validation against IASI/MetOp and CALIOP/CALIPSO observations, submitted 2021

Raikoke 2019

- Semi-operational NRT S5P SO2 LH provided by DLR INPULS
- Immediate tweet @DIrSO2: <u>https://twitter.com/DIrSo2</u>

BIRA: Michel Van Roozendael, Jeroen van Gent, Christophe Lerot, Isabelle De Smedt, Nicolas Theys, Huan Yu **CLF**: Michael Aspetsberger, Octavian Cuibus, Andrei Filip, Verena Lanzinger, Florian Steinschorn DLR: Diego Loyola, Ana del Aguila Perez, Çağrı Erciyes, Klaus-Peter Heue, Ronny Lutz, Victor Molina Garcia, Fabian Romahn, Birgit Wunschheim, Walter Zimmer ESA: Norrie Wright, Olivier Le Rille, Ben Veihelmann **GRASP**: Pavel Lytvynov, Anton Lopatin **IUP-B**: Andreas Richter, Lisa Behrens KNMI: Pepijn Veefkind, Martin De Graaf, Maarten Sneep LOA: Oleg Dubovik MPIC: Thomas Wagner, Steffen Beirle, Janis Pukite S&T: Daniele Fantin, Andrei Kukharenka RAL: Richard Siddans, , Andy Smith RAY: Yves Govaerts, Marta Luffarelli

DLR: Pieter Valks, Ka-Lok Chan, Pascal Hedelt, Klaus-Peter Heue, Stefan Kiemle, Sander Slijkhuis, Walter Zimmer